Let G be SO∘(n, 1) for n⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space (Ω , μ) , consider a measurable cocycle σ:Γ×Ω→H(κ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair (H, κ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.

Savini, A. (2024). On the trivializability of rank-one cocycles with an invariant field of projective measures. EUROPEAN JOURNAL OF MATHEMATICS, 10(1) [10.1007/s40879-023-00721-1].

On the trivializability of rank-one cocycles with an invariant field of projective measures

Savini A.
2024

Abstract

Let G be SO∘(n, 1) for n⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space (Ω , μ) , consider a measurable cocycle σ:Γ×Ω→H(κ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair (H, κ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.
Articolo in rivista - Articolo scientifico
Algebraic representability; Compatibility; Hyperbolic lattice; Measurable cocycle; Metric ergodicity; Projective measure;
English
9-gen-2024
2024
10
1
8
partially_open
Savini, A. (2024). On the trivializability of rank-one cocycles with an invariant field of projective measures. EUROPEAN JOURNAL OF MATHEMATICS, 10(1) [10.1007/s40879-023-00721-1].
File in questo prodotto:
File Dimensione Formato  
Savini-2024-European Journal of Mathematics-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Tutti i diritti riservati
Dimensione 395.27 kB
Formato Adobe PDF
395.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Savini-2024-European Journal of Mathematics-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 412.2 kB
Formato Adobe PDF
412.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516692
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact