Let G be SO∘(n, 1) for n⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space (Ω , μ) , consider a measurable cocycle σ:Γ×Ω→H(κ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair (H, κ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.
Savini, A. (2024). On the trivializability of rank-one cocycles with an invariant field of projective measures. EUROPEAN JOURNAL OF MATHEMATICS, 10(1) [10.1007/s40879-023-00721-1].
On the trivializability of rank-one cocycles with an invariant field of projective measures
Savini A.
2024
Abstract
Let G be SO∘(n, 1) for n⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space (Ω , μ) , consider a measurable cocycle σ:Γ×Ω→H(κ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair (H, κ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.File | Dimensione | Formato | |
---|---|---|---|
Savini-2024-European Journal of Mathematics-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Tutti i diritti riservati
Dimensione
395.27 kB
Formato
Adobe PDF
|
395.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Savini-2024-European Journal of Mathematics-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Altro
Dimensione
412.2 kB
Formato
Adobe PDF
|
412.2 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.