Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable PU(m, 1)-cocycles of complex hyperbolic lattices.

Moraschini, M., Savini, A. (2022). Multiplicative constants and maximal measurable cocycles in bounded cohomology. ERGODIC THEORY & DYNAMICAL SYSTEMS, 42(11), 3490-3525 [10.1017/etds.2021.91].

Multiplicative constants and maximal measurable cocycles in bounded cohomology

Savini A.
2022

Abstract

Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable PU(m, 1)-cocycles of complex hyperbolic lattices.
Articolo in rivista - Articolo scientifico
boundary map; bounded cohomology; lattice; maximal cocycle; Zimmer cocycle;
English
31-ago-2021
2022
42
11
3490
3525
open
Moraschini, M., Savini, A. (2022). Multiplicative constants and maximal measurable cocycles in bounded cohomology. ERGODIC THEORY & DYNAMICAL SYSTEMS, 42(11), 3490-3525 [10.1017/etds.2021.91].
File in questo prodotto:
File Dimensione Formato  
Moraschini-Savini-2022-Ergodic Theory and Dynamical Systems-VoR.pdf

accesso aperto

Descrizione: This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 467.78 kB
Formato Adobe PDF
467.78 kB Adobe PDF Visualizza/Apri
Moraschini-Savini-2022-Ergodic Theory and Dynamical Systems-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 641.12 kB
Formato Adobe PDF
641.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516691
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
Social impact