Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable PU(m, 1)-cocycles of complex hyperbolic lattices.
Moraschini, M., Savini, A. (2022). Multiplicative constants and maximal measurable cocycles in bounded cohomology. ERGODIC THEORY & DYNAMICAL SYSTEMS, 42(11), 3490-3525 [10.1017/etds.2021.91].
Multiplicative constants and maximal measurable cocycles in bounded cohomology
Savini A.
2022
Abstract
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable PU(m, 1)-cocycles of complex hyperbolic lattices.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Moraschini-Savini-2022-Ergodic Theory and Dynamical Systems-VoR.pdf
accesso aperto
Descrizione: This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
467.78 kB
Formato
Adobe PDF
|
467.78 kB | Adobe PDF | Visualizza/Apri |
|
Moraschini-Savini-2022-Ergodic Theory and Dynamical Systems-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Altro
Dimensione
641.12 kB
Formato
Adobe PDF
|
641.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


