Let Γ be a finitely generated group and let (X, µX ) be an ergodic standard Borel probability Γ-space. Suppose that X is a Hermitian symmetric space not of tube type and assume that G = Isom(X)◦ is simple. Given a Zariski dense measurable cocycle σ: Γ × X → G, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.

Sarti, F., Savini, A. (2023). Parametrized Kähler class and Zariski dense orbital 1-cohomology. MATHEMATICAL RESEARCH LETTERS, 30(6), 1895-1929 [10.4310/MRL.2023.v30.n6.a9].

Parametrized Kähler class and Zariski dense orbital 1-cohomology

Savini A.
2023

Abstract

Let Γ be a finitely generated group and let (X, µX ) be an ergodic standard Borel probability Γ-space. Suppose that X is a Hermitian symmetric space not of tube type and assume that G = Isom(X)◦ is simple. Given a Zariski dense measurable cocycle σ: Γ × X → G, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.
Articolo in rivista - Articolo scientifico
Kahler class, bounded cohomology, Hermitian group, Bergmann class
English
17-lug-2024
2023
30
6
1895
1929
partially_open
Sarti, F., Savini, A. (2023). Parametrized Kähler class and Zariski dense orbital 1-cohomology. MATHEMATICAL RESEARCH LETTERS, 30(6), 1895-1929 [10.4310/MRL.2023.v30.n6.a9].
File in questo prodotto:
File Dimensione Formato  
Sarti-Savini-2023-Mathematical Research Letters-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 343.94 kB
Formato Adobe PDF
343.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sarti-Savini-2023-Mathematical Research Letters-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 431.17 kB
Formato Adobe PDF
431.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516683
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact