If Γ is the fundamental group of a complete finite volume hyperbolic 3–manifold, Guilloux conjectured that the Borel function on the PSL(n; C)–character variety of Γ should be rigid at infinity, that is it should stay bounded away from its maximum at ideal points. We prove Guilloux’s conjecture in the particular case of the reflection group associated to a regular ideal tetrahedron of H3.

Savini, A. (2023). Rigidity at infinity for the Borel function of the tetrahedral reflection lattice. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 23(4), 1583-1600 [10.2140/agt.2023.23.1583].

Rigidity at infinity for the Borel function of the tetrahedral reflection lattice

Savini A.
2023

Abstract

If Γ is the fundamental group of a complete finite volume hyperbolic 3–manifold, Guilloux conjectured that the Borel function on the PSL(n; C)–character variety of Γ should be rigid at infinity, that is it should stay bounded away from its maximum at ideal points. We prove Guilloux’s conjecture in the particular case of the reflection group associated to a regular ideal tetrahedron of H3.
Articolo in rivista - Articolo scientifico
Borel invariant, bounded cohomology, reflection lattice
English
14-giu-2023
2023
23
4
1583
1600
partially_open
Savini, A. (2023). Rigidity at infinity for the Borel function of the tetrahedral reflection lattice. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 23(4), 1583-1600 [10.2140/agt.2023.23.1583].
File in questo prodotto:
File Dimensione Formato  
Savini-2023-Algebraic and Geometric Topology-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 506.19 kB
Formato Adobe PDF
506.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Savini-2023-Algebraic and Geometric Topology-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 352.01 kB
Formato Adobe PDF
352.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516682
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact