Let Γ be a torsion-free lattice of PU(p, 1) with p≥ 2 and let (X, μX) be an ergodic standard Borel probability Γ -space. We prove that any maximal Zariski dense measurable cocycle σ: Γ × X⟶ SU(m, n) is cohomologous to a cocycle associated to a representation of PU(p, 1) into SU(m, n) , with 1 ≤ m≤ n. The proof follows the line of Zimmer’ Superrigidity Theorem and requires the existence of a boundary map, that we prove in a much more general setting. As a consequence of our result, there cannot exist maximal measurable cocycles with the above properties when 1 < m< n.

Sarti, F., Savini, A. (2022). Superrigidity of maximal measurable cocycles of complex hyperbolic lattices. MATHEMATISCHE ZEITSCHRIFT, 300(1), 421-443 [10.1007/s00209-021-02801-y].

Superrigidity of maximal measurable cocycles of complex hyperbolic lattices

Savini A.
2022

Abstract

Let Γ be a torsion-free lattice of PU(p, 1) with p≥ 2 and let (X, μX) be an ergodic standard Borel probability Γ -space. We prove that any maximal Zariski dense measurable cocycle σ: Γ × X⟶ SU(m, n) is cohomologous to a cocycle associated to a representation of PU(p, 1) into SU(m, n) , with 1 ≤ m≤ n. The proof follows the line of Zimmer’ Superrigidity Theorem and requires the existence of a boundary map, that we prove in a much more general setting. As a consequence of our result, there cannot exist maximal measurable cocycles with the above properties when 1 < m< n.
Articolo in rivista - Articolo scientifico
Measurable cocycles, Toledo invariant, bounded cohomology
English
21-giu-2021
2022
300
1
421
443
open
Sarti, F., Savini, A. (2022). Superrigidity of maximal measurable cocycles of complex hyperbolic lattices. MATHEMATISCHE ZEITSCHRIFT, 300(1), 421-443 [10.1007/s00209-021-02801-y].
File in questo prodotto:
File Dimensione Formato  
Sarti-Savini-2022-Mathematische Zeitschrift-VoR.pdf

accesso aperto

Descrizione: CC BY 4.0 This article is licensed under a Creative Commons Attribution 4.0 International License To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 406.59 kB
Formato Adobe PDF
406.59 kB Adobe PDF Visualizza/Apri
Sarti-Savini-2022-Mathematische Zeitschrift-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 371.5 kB
Formato Adobe PDF
371.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516681
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
Social impact