Given the fundamental group 0 of a finite-volume complete hyperbolic 3-manifold M, it is possible to associate to any representation ρ : 0 → Isom(H3) a numerical invariant called volume. This invariant is bounded by the hyperbolic volume of M and satisfies a rigidity condition: If the volume of ρ is maximal, then ρ must be conjugated to the holonomy of the hyperbolic structure of M. This paper generalizes this rigidity result by showing that if a sequence of representations of 0 into Isom(H3) satisfies limn→1Vol(ρn) = Vol(M), then there must exist a sequence of elements gn 2 Isom(H3) such that the representations gn o ρn o g-1 n converge to the holonomy of M. In particular if the sequence (ρn)n2N converges to an ideal point of the character variety, then the sequence of volumes must stay away from the maximum. In this way we give an answer to [16, Conjecture 1]. We conclude by generalizing the result to the case of k-manifolds and representations in Isom(Hm), where m ≥ k ≥ 3.

Francaviglia, S., Savini, A. (2020). Volume rigidity at ideal points of the character variety of hyperbolic 3-manifolds. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 2020(4), 1325-1344 [10.2422/2036-2145.201709_010].

Volume rigidity at ideal points of the character variety of hyperbolic 3-manifolds

Savini, A
2020

Abstract

Given the fundamental group 0 of a finite-volume complete hyperbolic 3-manifold M, it is possible to associate to any representation ρ : 0 → Isom(H3) a numerical invariant called volume. This invariant is bounded by the hyperbolic volume of M and satisfies a rigidity condition: If the volume of ρ is maximal, then ρ must be conjugated to the holonomy of the hyperbolic structure of M. This paper generalizes this rigidity result by showing that if a sequence of representations of 0 into Isom(H3) satisfies limn→1Vol(ρn) = Vol(M), then there must exist a sequence of elements gn 2 Isom(H3) such that the representations gn o ρn o g-1 n converge to the holonomy of M. In particular if the sequence (ρn)n2N converges to an ideal point of the character variety, then the sequence of volumes must stay away from the maximum. In this way we give an answer to [16, Conjecture 1]. We conclude by generalizing the result to the case of k-manifolds and representations in Isom(Hm), where m ≥ k ≥ 3.
Articolo in rivista - Articolo scientifico
Volume of representations, ideal points, character variety
English
2020
2020
4
1325
1344
partially_open
Francaviglia, S., Savini, A. (2020). Volume rigidity at ideal points of the character variety of hyperbolic 3-manifolds. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 2020(4), 1325-1344 [10.2422/2036-2145.201709_010].
File in questo prodotto:
File Dimensione Formato  
Francaviglia-Savini-2020-Annali della Scuola Normale Superiore di Pisa - Classe di Scienze-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 594.6 kB
Formato Adobe PDF
594.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Francaviglia-Savini-2020-Annali della Scuola Normale Superiore di Pisa - Classe di Scienze-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 392.54 kB
Formato Adobe PDF
392.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516680
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
Social impact