Activation of the contact system leads to the cleavage of kininogen by plasma kallikrein resulting in kinin release and in the initiation of the intrinsic pathway of coagulation. Proteolysis of kininogen also generates antimicrobial peptides (AMPs) and can be induced by diverse pathogens. Thus, the contact system is regarded as a branch of innate immunity. We performed an evolutionary analysis of contact system genes by analyzing both inter- and intraspecies diversity. Results indicated that mammalian kininogen genes evolved adaptively. Positively selected sites are located in all protein domains with the exclusion of the bradykinin region and also involve AMP sequences (including the highly effective NAT26 peptide); positively selected sites also occur at alternative cleavage sites for neutrophil-released kinins. Population genetic analysis in humans indicated that a region of the kininogen gene (KNG1) has been a target of long-standing multiallelic balancing selection and that the coalescence time of the haplotype phylogeny dates back to the split between the humans and chimpanzees. No selection signature was detected in the Pan troglodytes KNG1 gene or in human genes encoding other components of the contact system. The selection targets in human KNG1 might be accounted for by variants with transcriptional regulatory activity. Results herein indicate a continuum in selective pressure acting on different timescales and targeting KNG1. This is in line with evidences suggesting a central role for kininogen in modulating of immune response and with its being a target of an extremely diverse array of pathogen species.

Cagliani, R., Forni, D., Riva, S., Pozzoli, U., Colleoni, M., Bresolin, N., et al. (2013). Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. MOLECULAR BIOLOGY AND EVOLUTION, 30(6), 1397-1408 [10.1093/molbev/mst054].

Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations

Sironi M
2013

Abstract

Activation of the contact system leads to the cleavage of kininogen by plasma kallikrein resulting in kinin release and in the initiation of the intrinsic pathway of coagulation. Proteolysis of kininogen also generates antimicrobial peptides (AMPs) and can be induced by diverse pathogens. Thus, the contact system is regarded as a branch of innate immunity. We performed an evolutionary analysis of contact system genes by analyzing both inter- and intraspecies diversity. Results indicated that mammalian kininogen genes evolved adaptively. Positively selected sites are located in all protein domains with the exclusion of the bradykinin region and also involve AMP sequences (including the highly effective NAT26 peptide); positively selected sites also occur at alternative cleavage sites for neutrophil-released kinins. Population genetic analysis in humans indicated that a region of the kininogen gene (KNG1) has been a target of long-standing multiallelic balancing selection and that the coalescence time of the haplotype phylogeny dates back to the split between the humans and chimpanzees. No selection signature was detected in the Pan troglodytes KNG1 gene or in human genes encoding other components of the contact system. The selection targets in human KNG1 might be accounted for by variants with transcriptional regulatory activity. Results herein indicate a continuum in selective pressure acting on different timescales and targeting KNG1. This is in line with evidences suggesting a central role for kininogen in modulating of immune response and with its being a target of an extremely diverse array of pathogen species.
Articolo in rivista - Articolo scientifico
balancing selection; contact system genes; innate immunity; KNG1; positive selection;
English
2013
30
6
1397
1408
reserved
Cagliani, R., Forni, D., Riva, S., Pozzoli, U., Colleoni, M., Bresolin, N., et al. (2013). Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. MOLECULAR BIOLOGY AND EVOLUTION, 30(6), 1397-1408 [10.1093/molbev/mst054].
File in questo prodotto:
File Dimensione Formato  
Cagliani-2013-Molecular Biology and Evolution-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/514881
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
Social impact