The neutron-induced total cross-section of 209Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and application. A recent experiment was conducted on the back-streaming white neutron beamline (Back-n) at the China Spallation Neutron Source (CSNS) using the neutron total cross-section spectrometer (NTOX). The neutron energy was determined using a fast multi-cell fission chamber and the time-of-flight technique. Two high-purity bismuth samples, 6 mm and 20 mm in thickness, were chosen for neutron transmission measurements and comparisons. The neutron total cross-sections of 209Bi, ranging from 0.3 eV to 20 MeV, were derived considering neutron flight time determination, flight path calibration, and background subtraction. A comparison of the experimental results with the data in the ENDF/B-VIII.0 library showed fair agreement, and the point-wise cross-sections were found to be consistent with existing experimental data. Special attention was given to the determination of resonance parameters, which were analyzed using the R -matrix code SAMMY and Bayesian method in the 0.5 keV to 20 keV energy range. The extracted resonance parameters were compared to previously reported results and evaluated data. This study is recognized as the first one where the neutron total cross-section of bismuth across such a broad energy spectrum is measured in a single measurement or experiment, and it provides valuable data for the assessment of related reaction information for evaluated libraries and the advancement of lead-bismuth-based nuclear systems.

Xue, J., Feng, S., Chen, Y., Yi, H., Li, X., Xiao, M., et al. (2023). Measurement and analysis of the neutron-induced total cross-sections of 209Bi from 0.3 eV to 20 MeV on the Back-n at CSNS. CHINESE PHYSICS C, 47(12) [10.1088/1674-1137/acf920].

Measurement and analysis of the neutron-induced total cross-sections of 209Bi from 0.3 eV to 20 MeV on the Back-n at CSNS

Feng S.;
2023

Abstract

The neutron-induced total cross-section of 209Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and application. A recent experiment was conducted on the back-streaming white neutron beamline (Back-n) at the China Spallation Neutron Source (CSNS) using the neutron total cross-section spectrometer (NTOX). The neutron energy was determined using a fast multi-cell fission chamber and the time-of-flight technique. Two high-purity bismuth samples, 6 mm and 20 mm in thickness, were chosen for neutron transmission measurements and comparisons. The neutron total cross-sections of 209Bi, ranging from 0.3 eV to 20 MeV, were derived considering neutron flight time determination, flight path calibration, and background subtraction. A comparison of the experimental results with the data in the ENDF/B-VIII.0 library showed fair agreement, and the point-wise cross-sections were found to be consistent with existing experimental data. Special attention was given to the determination of resonance parameters, which were analyzed using the R -matrix code SAMMY and Bayesian method in the 0.5 keV to 20 keV energy range. The extracted resonance parameters were compared to previously reported results and evaluated data. This study is recognized as the first one where the neutron total cross-section of bismuth across such a broad energy spectrum is measured in a single measurement or experiment, and it provides valuable data for the assessment of related reaction information for evaluated libraries and the advancement of lead-bismuth-based nuclear systems.
Articolo in rivista - Articolo scientifico
Back-n white neutron beamline; bismuth; neutron resonance parameter; Neutron-induced total cross-section; NTOX;
English
2023
47
12
124001
none
Xue, J., Feng, S., Chen, Y., Yi, H., Li, X., Xiao, M., et al. (2023). Measurement and analysis of the neutron-induced total cross-sections of 209Bi from 0.3 eV to 20 MeV on the Back-n at CSNS. CHINESE PHYSICS C, 47(12) [10.1088/1674-1137/acf920].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/513666
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact