We derive explicit formulae for the generating series of mixed Grothendieck dessins d'enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden–Jackson–Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair.

Hahn, M., Kramer, R., Lewanski, D. (2018). Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers. ADVANCES IN MATHEMATICS, 336, 38-69 [10.1016/j.aim.2018.07.028].

Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers

Kramer R.;
2018

Abstract

We derive explicit formulae for the generating series of mixed Grothendieck dessins d'enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden–Jackson–Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair.
Articolo in rivista - Articolo scientifico
Hurwitz numbers, quasi-polynomiality
English
2018
336
38
69
reserved
Hahn, M., Kramer, R., Lewanski, D. (2018). Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers. ADVANCES IN MATHEMATICS, 336, 38-69 [10.1016/j.aim.2018.07.028].
File in questo prodotto:
File Dimensione Formato  
Hahn-2018-Adv Math-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 554.07 kB
Formato Adobe PDF
554.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/511242
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
Social impact