We derive explicit formulae for the generating series of mixed Grothendieck dessins d'enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden–Jackson–Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair.
Hahn, M., Kramer, R., Lewanski, D. (2018). Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers. ADVANCES IN MATHEMATICS, 336, 38-69 [10.1016/j.aim.2018.07.028].
Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d'enfant, monotone, and double simple Hurwitz numbers
Kramer R.;
2018
Abstract
We derive explicit formulae for the generating series of mixed Grothendieck dessins d'enfant/monotone/simple Hurwitz numbers, via the semi-infinite wedge formalism. This reveals the strong piecewise polynomiality in the sense of Goulden–Jackson–Vakil, generalising a result of Johnson, and provides a new explicit proof of the piecewise polynomiality of the mixed case. Moreover, we derive wall-crossing formulae for the mixed case. These statements specialise to any of the three types of Hurwitz numbers, and to the mixed case of any pair.File | Dimensione | Formato | |
---|---|---|---|
Hahn-2018-Adv Math-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
554.07 kB
Formato
Adobe PDF
|
554.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.