We give a new proof of the cut-and-join equation for the monotone Hurwitz numbers, derived first by Goulden, Guay-Paquet, and Novak. The main interest in this particular equation is its close relation to the quadratic loop equation in the theory of spectral curve topological recursion, and we recall this motivation giving a new proof of the topological recursion for monotone Hurwitz numbers, obtained first by Do, Dyer, and Mathews.

Dunin-Barkowski, P., Kramer, R., Popolitov, A., Shadrin, S. (2019). Cut-and-join equation for monotone Hurwitz numbers revisited. JOURNAL OF GEOMETRY AND PHYSICS, 137, 1-6 [10.1016/j.geomphys.2018.11.010].

Cut-and-join equation for monotone Hurwitz numbers revisited

Kramer R.;
2019

Abstract

We give a new proof of the cut-and-join equation for the monotone Hurwitz numbers, derived first by Goulden, Guay-Paquet, and Novak. The main interest in this particular equation is its close relation to the quadratic loop equation in the theory of spectral curve topological recursion, and we recall this motivation giving a new proof of the topological recursion for monotone Hurwitz numbers, obtained first by Do, Dyer, and Mathews.
Articolo in rivista - Articolo scientifico
Cut-and-join equation; Hurwitz numbers; Topological recursion;
English
2019
137
1
6
partially_open
Dunin-Barkowski, P., Kramer, R., Popolitov, A., Shadrin, S. (2019). Cut-and-join equation for monotone Hurwitz numbers revisited. JOURNAL OF GEOMETRY AND PHYSICS, 137, 1-6 [10.1016/j.geomphys.2018.11.010].
File in questo prodotto:
File Dimensione Formato  
Dunin-Barkowski-2019-J Geom Phys-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 323.47 kB
Formato Adobe PDF
323.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Dunin-Barkowski-2019-J Geom Phys-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 239.56 kB
Formato Adobe PDF
239.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/511199
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
Social impact