In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.

Auricchio, G., Ferrarini, L., Lanzarotto, G. (2023). An integer linear programming model for tilings. JOURNAL OF MATHEMATICS & MUSIC, 17(3), 514-530 [10.1080/17459737.2023.2180812].

An integer linear programming model for tilings

Ferrarini L.;Lanzarotto G.
2023

Abstract

In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.
Articolo in rivista - Articolo scientifico
(T2) conjecture; Integer linear programming; mathematics and music; tiling Problems; Vuza canons;
English
1-mar-2023
2023
17
3
514
530
none
Auricchio, G., Ferrarini, L., Lanzarotto, G. (2023). An integer linear programming model for tilings. JOURNAL OF MATHEMATICS & MUSIC, 17(3), 514-530 [10.1080/17459737.2023.2180812].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/510320
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
Social impact