Single-cell barcoding technologies enable genome sequencing of thousands of individual cells in parallel, but with extremely low sequencing coverage (<0.05×) per cell. While the total copy number of large multi-megabase segments can be derived from such data, important allele-specific mutations—such as copy-neutral loss of heterozygosity (LOH) in cancer—are missed. We introduce copy-number haplotype inference in single cells using evolutionary links (CHISEL), a method to infer allele- and haplotype-specific copy numbers in single cells and subpopulations of cells by aggregating sparse signal across hundreds or thousands of individual cells. We applied CHISEL to ten single-cell sequencing datasets of ~2,000 cells from two patients with breast cancer. We identified extensive allele-specific copy-number aberrations (CNAs) in these samples, including copy-neutral LOHs, whole-genome duplications (WGDs) and mirrored-subclonal CNAs. These allele-specific CNAs affect genomic regions containing well-known breast-cancer genes. We also refined the reconstruction of tumor evolution, timing allele-specific CNAs before and after WGDs, identifying low-frequency subpopulations distinguished by unique CNAs and uncovering evidence of convergent evolution.
Zaccaria, S., Raphael, B. (2021). Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. NATURE BIOTECHNOLOGY, 39(2), 207-214 [10.1038/s41587-020-0661-6].
Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL
Zaccaria S.;
2021
Abstract
Single-cell barcoding technologies enable genome sequencing of thousands of individual cells in parallel, but with extremely low sequencing coverage (<0.05×) per cell. While the total copy number of large multi-megabase segments can be derived from such data, important allele-specific mutations—such as copy-neutral loss of heterozygosity (LOH) in cancer—are missed. We introduce copy-number haplotype inference in single cells using evolutionary links (CHISEL), a method to infer allele- and haplotype-specific copy numbers in single cells and subpopulations of cells by aggregating sparse signal across hundreds or thousands of individual cells. We applied CHISEL to ten single-cell sequencing datasets of ~2,000 cells from two patients with breast cancer. We identified extensive allele-specific copy-number aberrations (CNAs) in these samples, including copy-neutral LOHs, whole-genome duplications (WGDs) and mirrored-subclonal CNAs. These allele-specific CNAs affect genomic regions containing well-known breast-cancer genes. We also refined the reconstruction of tumor evolution, timing allele-specific CNAs before and after WGDs, identifying low-frequency subpopulations distinguished by unique CNAs and uncovering evidence of convergent evolution.File | Dimensione | Formato | |
---|---|---|---|
Zaccaria-2021-Nature Biotechnology-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
6.44 MB
Formato
Adobe PDF
|
6.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.