We prove -optimal error estimates for the original discontinuous Galerkin (DG) method when approximating solutions to first-order hyperbolic problems with constant convection fields in the and DG norms. The main theoretical tools used in the analysis are novel -optimal approximation properties of the special projector introduced in Cockburn et al. (2008, Optimal convergence of the original DG method for the transportreaction equation on special meshes. SIAM J. Numer. Anal., 46:1250-1265). We assess the theoretical findings on some test cases.
Dong, Z., Mascotto, L. (2024). hp-optimal convergence of the original DG method for linear hyperbolic problems on special simplicial meshes. IMA JOURNAL OF NUMERICAL ANALYSIS [10.1093/imanum/drae051].
hp-optimal convergence of the original DG method for linear hyperbolic problems on special simplicial meshes
Mascotto, L
2024
Abstract
We prove -optimal error estimates for the original discontinuous Galerkin (DG) method when approximating solutions to first-order hyperbolic problems with constant convection fields in the and DG norms. The main theoretical tools used in the analysis are novel -optimal approximation properties of the special projector introduced in Cockburn et al. (2008, Optimal convergence of the original DG method for the transportreaction equation on special meshes. SIAM J. Numer. Anal., 46:1250-1265). We assess the theoretical findings on some test cases.File | Dimensione | Formato | |
---|---|---|---|
Dong-Mascotto-2024-IMA Journal of Numerical Analysis-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
824.4 kB
Formato
Adobe PDF
|
824.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Dong-Mascotto-2024-Arxiv-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.