We test the regime of validity of the one-loop galaxy bias for a wide variety of biased tracers. Our most stringent test asks the bias model to simultaneously match the galaxy-galaxy and galaxy-mass spectrum, using the measured nonlinear matter spectrum from the simulations to test the one-loop effects from the bias expansion alone. In addition, we investigate the relevance of short-range nonlocality and halo exclusion through higher-derivative and scale-dependent noise terms, as well as the impact of using coevolution relations to reduce the number of free fitting parameters. From comparing the validity and merit of these assumptions, we find that a four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot noise) with a fixed quadratic tidal bias provides a robust modeling choice for the auto power spectrum of the less massive halos in our set of samples and their galaxy populations [up to kmax=0.35 h/Mpc for a sample volume of 6 (Gpc/h)3]. For the more biased tracers, it is most beneficial to include scale-dependent noise. This is also the preferred option when considering combinations of the auto and cross power spectrum, which might be relevant in joint studies of galaxy clustering and weak lensing. We also test the use of perturbation theory to account for matter loops through gRPT, EFT, and the hybrid approach RESPRESSO. While all these have similar performance, we find the latter to be the best in terms of validity and recovered mean posterior values, in accordance with it being based partially on simulations.

Eggemeier, A., Scoccimarro, R., Crocce, M., Pezzotta, A., Sanchez, A. (2020). Testing one-loop galaxy bias: Power spectrum. PHYSICAL REVIEW D, 102(10) [10.1103/PhysRevD.102.103530].

Testing one-loop galaxy bias: Power spectrum

Pezzotta A.;
2020

Abstract

We test the regime of validity of the one-loop galaxy bias for a wide variety of biased tracers. Our most stringent test asks the bias model to simultaneously match the galaxy-galaxy and galaxy-mass spectrum, using the measured nonlinear matter spectrum from the simulations to test the one-loop effects from the bias expansion alone. In addition, we investigate the relevance of short-range nonlocality and halo exclusion through higher-derivative and scale-dependent noise terms, as well as the impact of using coevolution relations to reduce the number of free fitting parameters. From comparing the validity and merit of these assumptions, we find that a four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot noise) with a fixed quadratic tidal bias provides a robust modeling choice for the auto power spectrum of the less massive halos in our set of samples and their galaxy populations [up to kmax=0.35 h/Mpc for a sample volume of 6 (Gpc/h)3]. For the more biased tracers, it is most beneficial to include scale-dependent noise. This is also the preferred option when considering combinations of the auto and cross power spectrum, which might be relevant in joint studies of galaxy clustering and weak lensing. We also test the use of perturbation theory to account for matter loops through gRPT, EFT, and the hybrid approach RESPRESSO. While all these have similar performance, we find the latter to be the best in terms of validity and recovered mean posterior values, in accordance with it being based partially on simulations.
Articolo in rivista - Articolo scientifico
Power Spectra; Dark Matter; Large-Scale Structure of Universe
English
2020
102
10
103530
reserved
Eggemeier, A., Scoccimarro, R., Crocce, M., Pezzotta, A., Sanchez, A. (2020). Testing one-loop galaxy bias: Power spectrum. PHYSICAL REVIEW D, 102(10) [10.1103/PhysRevD.102.103530].
File in questo prodotto:
File Dimensione Formato  
Eggemeier-2020-Physical Review D-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 6.24 MB
Formato Adobe PDF
6.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/505442
Citazioni
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
Social impact