We investigate the impact of different assumptions in the modeling of one-loop galaxy bias on the recovery of cosmological parameters, as a follow-up of the analysis done in the first paper of the series at fixed cosmology. To carry out these tests we focus on the real-space galaxy-power spectrum from a set of three different synthetic galaxy samples whose clustering properties are meant to match the ones of the CMASS and LOWZ catalogs of BOSS and the SDSS Main Galaxy Sample. We investigate the relevance of allowing for either short range nonlocality or scale-dependent stochasticity by fitting the real-space galaxy autopower spectrum or the combination of galaxy-galaxy and galaxy-matter power spectrum. From a comparison among the goodness of fit (χ2), unbiasedness of cosmological parameters (FoB), and figure of merit (FoM) of the model, we find that a simple four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot noise) with fixed quadratic tidal bias provides a robust modeling choice for the autopower spectrum of the three galaxy samples, up to kmax=0.3h Mpc-1 and for an effective volume of 6h-3 Gpc3. Instead, a joint analysis of the two observables fails at larger scales, and a model extension with either higher derivatives or scale-dependent shot noise is necessary to reach a similar kmax, with the latter providing the most accurate and stable results. Throughout the majority of the paper, we fix the description of the nonlinear matter evolution using a hybrid perturbative-N-body approach, respresso, that was found in the first paper to be the closest performing to the measured matter spectrum. We also test the impact of different modeling assumptions based on perturbative approaches, such as galilean-invariant Renormalised Perturbation Theory (gRPT) and effective field theory (EFT). In all cases, we find the inclusion of scale-dependent shot noise to increase the range of validity of the model in terms of FoB and χ2. Interestingly, these model extensions with additional free parameters do not necessarily lead to an increase in the maximally achievable FoM for the cosmological parameters (h,ωch2,As), which are generally consistent with those of the simpler model at smaller kmax.

Pezzotta, A., Crocce, M., Eggemeier, A., Sanchez, A., Scoccimarro, R. (2021). Testing one-loop galaxy bias: Cosmological constraints from the power spectrum. PHYSICAL REVIEW D, 104(4) [10.1103/PhysRevD.104.043531].

Testing one-loop galaxy bias: Cosmological constraints from the power spectrum

Pezzotta A.;
2021

Abstract

We investigate the impact of different assumptions in the modeling of one-loop galaxy bias on the recovery of cosmological parameters, as a follow-up of the analysis done in the first paper of the series at fixed cosmology. To carry out these tests we focus on the real-space galaxy-power spectrum from a set of three different synthetic galaxy samples whose clustering properties are meant to match the ones of the CMASS and LOWZ catalogs of BOSS and the SDSS Main Galaxy Sample. We investigate the relevance of allowing for either short range nonlocality or scale-dependent stochasticity by fitting the real-space galaxy autopower spectrum or the combination of galaxy-galaxy and galaxy-matter power spectrum. From a comparison among the goodness of fit (χ2), unbiasedness of cosmological parameters (FoB), and figure of merit (FoM) of the model, we find that a simple four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot noise) with fixed quadratic tidal bias provides a robust modeling choice for the autopower spectrum of the three galaxy samples, up to kmax=0.3h Mpc-1 and for an effective volume of 6h-3 Gpc3. Instead, a joint analysis of the two observables fails at larger scales, and a model extension with either higher derivatives or scale-dependent shot noise is necessary to reach a similar kmax, with the latter providing the most accurate and stable results. Throughout the majority of the paper, we fix the description of the nonlinear matter evolution using a hybrid perturbative-N-body approach, respresso, that was found in the first paper to be the closest performing to the measured matter spectrum. We also test the impact of different modeling assumptions based on perturbative approaches, such as galilean-invariant Renormalised Perturbation Theory (gRPT) and effective field theory (EFT). In all cases, we find the inclusion of scale-dependent shot noise to increase the range of validity of the model in terms of FoB and χ2. Interestingly, these model extensions with additional free parameters do not necessarily lead to an increase in the maximally achievable FoM for the cosmological parameters (h,ωch2,As), which are generally consistent with those of the simpler model at smaller kmax.
Articolo in rivista - Articolo scientifico
Power Spectra; Dark Matter; Large-Scale Structure of Universe
English
2021
104
4
043531
open
Pezzotta, A., Crocce, M., Eggemeier, A., Sanchez, A., Scoccimarro, R. (2021). Testing one-loop galaxy bias: Cosmological constraints from the power spectrum. PHYSICAL REVIEW D, 104(4) [10.1103/PhysRevD.104.043531].
File in questo prodotto:
File Dimensione Formato  
Pezzotta-2021-Physical Review D-Vor.pdf

accesso aperto

Descrizione: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/505440
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 14
Social impact