Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.

Procaccini, C., Garavelli, S., Carbone, F., Di Silvestre, D., La Rocca, C., Greco, D., et al. (2021). Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. IMMUNITY, 54(7), 1543-1560 [10.1016/j.immuni.2021.04.014].

Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential

Vella D.;
2021

Abstract

Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Articolo in rivista - Articolo scientifico
autoimmunity; dimethyl fumarate; leptin; metabolism; multiple sclerosis; proliferation; SLC7A11; starvation; Treg cells; xCT;
English
2021
54
7
1543
1560
reserved
Procaccini, C., Garavelli, S., Carbone, F., Di Silvestre, D., La Rocca, C., Greco, D., et al. (2021). Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. IMMUNITY, 54(7), 1543-1560 [10.1016/j.immuni.2021.04.014].
File in questo prodotto:
File Dimensione Formato  
Procaccini-2021-Immunity-VoR.pdf

Solo gestori archivio

Descrizione: PDF available on the publisher's website under an Elsevier user license https://www.elsevier.com/about/policies-and-standards/open-access-licenses/user
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 6.39 MB
Formato Adobe PDF
6.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/504979
Citazioni
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
Social impact