During the last years, graphical models have become a popular tool to represent dependencies among variables in many scientific areas. Typically, the objective is to discover dependence relationships that can be represented through a directed acyclic graph (DAG). The set of all conditional independencies encoded by a DAG determines its Markov property. In general, DAGs encoding the same conditional independencies are not distinguishable from observational data and can be collected into equivalence classes, each one represented by a chain graph called essential graph (EG). However, both the DAG and EG space grow super exponentially in the number of variables, and so, graph structural learning requires the adoption of Markov chain Monte Carlo (MCMC) techniques. In this paper, we review some recent results on Bayesian model selection of Gaussian DAG models under a unified framework. These results are based on closed-form expressions for the marginal likelihood of a DAG and EG structure, which is obtained from a few suitable assumptions on the prior for model parameters. We then introduce a general MCMC scheme that can be adopted both for model selection of DAGs and EGs together with a couple of applications on real data sets.

Castelletti, F. (2020). Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures. INTERNATIONAL STATISTICAL REVIEW, 88(3), 752-775 [10.1111/insr.12379].

Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures

Castelletti F.
2020

Abstract

During the last years, graphical models have become a popular tool to represent dependencies among variables in many scientific areas. Typically, the objective is to discover dependence relationships that can be represented through a directed acyclic graph (DAG). The set of all conditional independencies encoded by a DAG determines its Markov property. In general, DAGs encoding the same conditional independencies are not distinguishable from observational data and can be collected into equivalence classes, each one represented by a chain graph called essential graph (EG). However, both the DAG and EG space grow super exponentially in the number of variables, and so, graph structural learning requires the adoption of Markov chain Monte Carlo (MCMC) techniques. In this paper, we review some recent results on Bayesian model selection of Gaussian DAG models under a unified framework. These results are based on closed-form expressions for the marginal likelihood of a DAG and EG structure, which is obtained from a few suitable assumptions on the prior for model parameters. We then introduce a general MCMC scheme that can be adopted both for model selection of DAGs and EGs together with a couple of applications on real data sets.
Articolo in rivista - Articolo scientifico
Bayesian model selection; directed acyclic graph; essential graph; graphical model; Markov equivalence;
English
2020
88
3
752
775
reserved
Castelletti, F. (2020). Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures. INTERNATIONAL STATISTICAL REVIEW, 88(3), 752-775 [10.1111/insr.12379].
File in questo prodotto:
File Dimensione Formato  
Castelletti-2020-International Statistical Review-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/503565
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
Social impact