Detecting stochastic gravitational wave backgrounds (SGWBs) with the Laser Interferometer Space Antenna (LISA) is one of the mission's scientific objectives. Disentangling SGWBs of astrophysical and cosmological origin is a challenging task, further complicated by the noise level uncertainties. In this study, we present a Bayesian methodology for inferring SGWBs, drawing inspiration from Gaussian stochastic processes. We assess the effectiveness of this approach for signals with unknown spectral shapes by systematically exploring the model hyperparameters - a preliminary step toward a more efficient transdimensional exploration. To validate our method, we apply it to a representative astrophysical scenario: the inference of the astrophysical background of extreme mass ratio inspirals, as recently estimated [F. Pozzoli et al., Phys. Rev. D 108, 103039 (2023)PRVDAQ2470-001010.1103/PhysRevD.108.103039]. Our findings indicate that the algorithm is capable of recovering the injected signal even with uninformative priors, simultaneously providing an estimate of the noise level.

Pozzoli, F., Buscicchio, R., Moore, C., Haardt, F., Sesana, A. (2024). Weakly parametric approach to stochastic background inference in LISA. PHYSICAL REVIEW D, 109(8) [10.1103/PhysRevD.109.083029].

Weakly parametric approach to stochastic background inference in LISA

Pozzoli F.
Primo
;
Buscicchio R.
Secondo
;
Sesana A.
2024

Abstract

Detecting stochastic gravitational wave backgrounds (SGWBs) with the Laser Interferometer Space Antenna (LISA) is one of the mission's scientific objectives. Disentangling SGWBs of astrophysical and cosmological origin is a challenging task, further complicated by the noise level uncertainties. In this study, we present a Bayesian methodology for inferring SGWBs, drawing inspiration from Gaussian stochastic processes. We assess the effectiveness of this approach for signals with unknown spectral shapes by systematically exploring the model hyperparameters - a preliminary step toward a more efficient transdimensional exploration. To validate our method, we apply it to a representative astrophysical scenario: the inference of the astrophysical background of extreme mass ratio inspirals, as recently estimated [F. Pozzoli et al., Phys. Rev. D 108, 103039 (2023)PRVDAQ2470-001010.1103/PhysRevD.108.103039]. Our findings indicate that the algorithm is capable of recovering the injected signal even with uninformative priors, simultaneously providing an estimate of the noise level.
Articolo in rivista - Articolo scientifico
Gravitational waves, general relativity, stochastic backgrounds, LISA
English
2024
109
8
083029
partially_open
Pozzoli, F., Buscicchio, R., Moore, C., Haardt, F., Sesana, A. (2024). Weakly parametric approach to stochastic background inference in LISA. PHYSICAL REVIEW D, 109(8) [10.1103/PhysRevD.109.083029].
File in questo prodotto:
File Dimensione Formato  
Pozzoli-2024- PhysRevD-VoR.pdf

Solo gestori archivio

Descrizione: Versione pubblicata su rivista
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 4.78 MB
Formato Adobe PDF
4.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pozzoli-2023- arXiv-preprint.pdf

accesso aperto

Descrizione: Preprint
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/496099
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact