Purpose: Aquatic bacteria of the genus Vibrio include animal and human pathogens. The occurrence of Vibrio-related diseases has been associated with the current climate change-driven increase of sea surface temperature. Vibrio spp. can enter into the viable but non-culturable (VBNC) state, as a consequence of starvation in seawater at low temperatures. In such physiological state, Vibrio cells are no longer culturable on standard media agar plates but can resuscitate if incubated at 30 °C prior to plating, retaining virulence. Since limited information is available on regards to this topic, in this work, we characterized the phenotypic changes of four Vibrio spp. strains (one laboratory strain and three environmental isolates) in cold seawater microcosms, investigating the relationship between resuscitation and a hydrogen peroxide-induced oxidative stress. Methods: Cell phenotypic changes and the effect of hydrogen peroxide and/or catalase addition to the medium were studied on VBNC and resuscitated cells by flow cytometry in microcosm experiments, paralleled by culturability experiments by plating. Results: The cells of all the Vibrio strains changed their phenotype upon the induction of the VBNC state resulting in cell dwarfing and decrease in DNA quantity, losing the ability to grow on solid media. These features were partially or totally reverted when the cells were treated for resuscitation. Hydrogen peroxide at concentrations as low as 0.007 mM prevented resuscitation and a prolonged exposure to hydrogen peroxide at concentrations far under those inhibiting the growth of log-phase cells permanently damaged VBNC cells, which could not be resuscitated. However, the potential of culturability of VBNC cells could be preserved, at least for a part of the population, by plating the cells in the presence of catalase. The study also showed that during the resuscitation process, the cells gradually increased their resistance to hydrogen peroxide. Conclusions: The timing and mode of induction of the VBNC state, as well as cell resuscitation and response to hydrogen peroxide, differed among Vibrio strains, indicating that induction and resuscitation from dormancy could vary in the context of species belonging to a single genus.
Prosdocimi, E., Arioli, S., Mapelli, F., Zeaiter, Z., Fusi, M., Daffonchio, D., et al. (2023). Cell phenotype changes and oxidative stress response in Vibrio spp. induced into viable but non-culturable (VBNC) state. ANNALS OF MICROBIOLOGY, 73(1) [10.1186/s13213-022-01703-6].
Cell phenotype changes and oxidative stress response in Vibrio spp. induced into viable but non-culturable (VBNC) state
Mapelli, Francesca;Zeaiter, Zahraa;
2023
Abstract
Purpose: Aquatic bacteria of the genus Vibrio include animal and human pathogens. The occurrence of Vibrio-related diseases has been associated with the current climate change-driven increase of sea surface temperature. Vibrio spp. can enter into the viable but non-culturable (VBNC) state, as a consequence of starvation in seawater at low temperatures. In such physiological state, Vibrio cells are no longer culturable on standard media agar plates but can resuscitate if incubated at 30 °C prior to plating, retaining virulence. Since limited information is available on regards to this topic, in this work, we characterized the phenotypic changes of four Vibrio spp. strains (one laboratory strain and three environmental isolates) in cold seawater microcosms, investigating the relationship between resuscitation and a hydrogen peroxide-induced oxidative stress. Methods: Cell phenotypic changes and the effect of hydrogen peroxide and/or catalase addition to the medium were studied on VBNC and resuscitated cells by flow cytometry in microcosm experiments, paralleled by culturability experiments by plating. Results: The cells of all the Vibrio strains changed their phenotype upon the induction of the VBNC state resulting in cell dwarfing and decrease in DNA quantity, losing the ability to grow on solid media. These features were partially or totally reverted when the cells were treated for resuscitation. Hydrogen peroxide at concentrations as low as 0.007 mM prevented resuscitation and a prolonged exposure to hydrogen peroxide at concentrations far under those inhibiting the growth of log-phase cells permanently damaged VBNC cells, which could not be resuscitated. However, the potential of culturability of VBNC cells could be preserved, at least for a part of the population, by plating the cells in the presence of catalase. The study also showed that during the resuscitation process, the cells gradually increased their resistance to hydrogen peroxide. Conclusions: The timing and mode of induction of the VBNC state, as well as cell resuscitation and response to hydrogen peroxide, differed among Vibrio strains, indicating that induction and resuscitation from dormancy could vary in the context of species belonging to a single genus.File | Dimensione | Formato | |
---|---|---|---|
Prosdomici-2023-Annals of microbiology-VoR.pdf
accesso aperto
Descrizione: CC BY 4.0 This article is licensed under a Creative Commons Attribution 4.0 International License
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.