Background: Childhood obesity is a significant public health problem representing the most severe challenge in the world. Antibiotic exposure in early life has been identified as a potential factor that can disrupt the development of the gut microbiome, which may have implications for obesity. Objective: This study aims to evaluate the risk of developing obesity among children exposed to antibiotics early in life. Methods: An Italian retrospective pediatric population-based cohort study of children born between 2004 and 2018 was adopted using the Pedianet database. Children were required to be born at term, with normal weight, and without genetic diseases or congenital anomalies. We assessed the timing of the first antibiotic prescription from birth to 6, 12, and 24 months of life and the dose-response relationship via the number of antibiotic prescriptions recorded in the first year of life (none, 1, 2, and ≥3 prescriptions). Obesity was defined as a BMI z score >3 for children aged ≤5 years and >2 for children aged >5 years, using the World Health Organization growth references. The obese incidence rate (IR) × 100 person-years and the relative 95% CI were computed using infant sex, area of residence, preschool and school age, and area deprivation index, which are the covariates of interest. A mixed-effect Cox proportional hazards model was used to estimate the hazard ratio and 95% CI for the association between antibiotic exposure in early life and child obesity between 24 months and 14 years of age, considering the family pediatricians as a random factor. Several subgroup and sensitivity analyses were performed to assess the robustness of our results. Results: Among 121,540 children identified, 54,698 were prescribed at least an antibiotic within the first year of life and 26,990 were classified as obese during follow-up with an incidence rate of 4.05 cases (95% CI 4.01-4.10) × 100 person-year. The risk of obesity remained consistent across different timings of antibiotic prescriptions at 6 months, 1 year, and 2 years (fully adjusted hazard ratio [aHR] 1.07, 95% CI 1.04-1.10; aHR 1.06, 95% CI 1.03-1.09; and aHR 1.07, 95% CI 1.04-1.10, respectively). Increasing the number of antibiotic exposures increases the risk of obesity significantly (P trend<.001). The individual-specific age analysis showed that starting antibiotic therapy very early (between 0 and 5 months) had the greatest impact (aHR 1.12, 95% CI 1.08-1.17) on childhood obesity with respect to what was observed among those who were first prescribed antibiotics after the fifth month of life. These results were consistent across subgroup and sensitivity analyses. Conclusions: The results from this large population-based study support the association between early exposure to antibiotics and an increased risk of childhood obesity. This association becomes progressively stronger with both increasing numbers of antibiotic prescriptions and younger age at the time of the first prescription.
Cantarutti, A., Rescigno, P., Borso, C., Doblas, J., Bressan, S., Barbieri, E., et al. (2024). Association Between Early-Life Exposure to Antibiotics and Development of Child Obesity: Population-Based Study in Italy. JMIR PUBLIC HEALTH AND SURVEILLANCE, 10 [10.2196/51734].
Association Between Early-Life Exposure to Antibiotics and Development of Child Obesity: Population-Based Study in Italy
Cantarutti A.
;
2024
Abstract
Background: Childhood obesity is a significant public health problem representing the most severe challenge in the world. Antibiotic exposure in early life has been identified as a potential factor that can disrupt the development of the gut microbiome, which may have implications for obesity. Objective: This study aims to evaluate the risk of developing obesity among children exposed to antibiotics early in life. Methods: An Italian retrospective pediatric population-based cohort study of children born between 2004 and 2018 was adopted using the Pedianet database. Children were required to be born at term, with normal weight, and without genetic diseases or congenital anomalies. We assessed the timing of the first antibiotic prescription from birth to 6, 12, and 24 months of life and the dose-response relationship via the number of antibiotic prescriptions recorded in the first year of life (none, 1, 2, and ≥3 prescriptions). Obesity was defined as a BMI z score >3 for children aged ≤5 years and >2 for children aged >5 years, using the World Health Organization growth references. The obese incidence rate (IR) × 100 person-years and the relative 95% CI were computed using infant sex, area of residence, preschool and school age, and area deprivation index, which are the covariates of interest. A mixed-effect Cox proportional hazards model was used to estimate the hazard ratio and 95% CI for the association between antibiotic exposure in early life and child obesity between 24 months and 14 years of age, considering the family pediatricians as a random factor. Several subgroup and sensitivity analyses were performed to assess the robustness of our results. Results: Among 121,540 children identified, 54,698 were prescribed at least an antibiotic within the first year of life and 26,990 were classified as obese during follow-up with an incidence rate of 4.05 cases (95% CI 4.01-4.10) × 100 person-year. The risk of obesity remained consistent across different timings of antibiotic prescriptions at 6 months, 1 year, and 2 years (fully adjusted hazard ratio [aHR] 1.07, 95% CI 1.04-1.10; aHR 1.06, 95% CI 1.03-1.09; and aHR 1.07, 95% CI 1.04-1.10, respectively). Increasing the number of antibiotic exposures increases the risk of obesity significantly (P trend<.001). The individual-specific age analysis showed that starting antibiotic therapy very early (between 0 and 5 months) had the greatest impact (aHR 1.12, 95% CI 1.08-1.17) on childhood obesity with respect to what was observed among those who were first prescribed antibiotics after the fifth month of life. These results were consistent across subgroup and sensitivity analyses. Conclusions: The results from this large population-based study support the association between early exposure to antibiotics and an increased risk of childhood obesity. This association becomes progressively stronger with both increasing numbers of antibiotic prescriptions and younger age at the time of the first prescription.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.