We introduce a pressure robust finite element method for the linearized magnetohydrodynamics equations in three space dimensions, which is provably quasi-robust also in the presence of high fluid and magnetic Reynolds numbers. The proposed scheme uses a nonconforming BDM approach with suitable DG terms for the fluid part, combined with an H1-conforming choice for the magnetic fluxes. The method introduces also a specific CIP-type stabilization associated to the coupling terms. Finally, the theoretical result are further validated by numerical experiments.

BEIRAO DA VEIGA, L., Dassi, F., Vacca, G. (2024). Robust Finite Elements for Linearized Magnetohydrodynamics. SIAM JOURNAL ON NUMERICAL ANALYSIS, 62(4 (August 31, 2024)), 1539-1564 [10.1137/23m1582783].

Robust Finite Elements for Linearized Magnetohydrodynamics

Lourenco Beirao da Veiga
;
Franco Dassi;
2024

Abstract

We introduce a pressure robust finite element method for the linearized magnetohydrodynamics equations in three space dimensions, which is provably quasi-robust also in the presence of high fluid and magnetic Reynolds numbers. The proposed scheme uses a nonconforming BDM approach with suitable DG terms for the fluid part, combined with an H1-conforming choice for the magnetic fluxes. The method introduces also a specific CIP-type stabilization associated to the coupling terms. Finally, the theoretical result are further validated by numerical experiments.
Articolo in rivista - Articolo scientifico
convection robustness; magnetohydrodynamics; pressure robustness;
English
9-lug-2024
2024
62
4 (August 31, 2024)
1539
1564
reserved
BEIRAO DA VEIGA, L., Dassi, F., Vacca, G. (2024). Robust Finite Elements for Linearized Magnetohydrodynamics. SIAM JOURNAL ON NUMERICAL ANALYSIS, 62(4 (August 31, 2024)), 1539-1564 [10.1137/23m1582783].
File in questo prodotto:
File Dimensione Formato  
Beirao da Veiga-2024-SIAM Journal on Numerical Analysis-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/492819
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact