For a C 2-functional J defined on a Hilbert space X, we consider the set N={x∈A:projVx∇;J(x)=0}, where A⊂X is open and V x⊂X is a closed linear subspace, possibly depending on x∈A. We study sufficient conditions for a constrained critical point of J restricted to N to be a free critical point of J, providing a unified approach to different natural constraints known in the literature, such as the Birkhoff-Hestenes natural isoperimetric conditions and the Nehari manifold. As an application, we prove multiplicity of solutions to a class of superlinear Schrödinger systems on singularly perturbed domains
Noris, B., & Verzini, G. (2012). A remark on natural constraints in variational methods and an application to superlinear Schrodinger systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 254(3), 1529-1547 [10.1016/j.jde.2012.11.003].
Citazione: | Noris, B., & Verzini, G. (2012). A remark on natural constraints in variational methods and an application to superlinear Schrodinger systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 254(3), 1529-1547 [10.1016/j.jde.2012.11.003]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | A remark on natural constraints in variational methods and an application to superlinear Schrodinger systems | |
Autori: | Noris, B; Verzini, G | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Lingua: | English | |
Rivista: | JOURNAL OF DIFFERENTIAL EQUATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jde.2012.11.003 | |
Appare nelle tipologie: | 01 - Articolo su rivista |