We study the existence of positive increasing radial solutions for superlinear Neumann problems in the ball. We do not impose any growth condition on the nonlinearity at infinity and our assumptions allow for interactions with the spectrum. In our approach we use both topological and variational arguments, and we overcome the lack of compactness by considering the cone of nonnegative, nondecreasing radial functions of H1(B)

Bonheure, D., Noris, B., Weth, T. (2012). Increasing radial solutions for Neumann problems without growth restrictions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 29(4), 573-588 [10.1016/j.anihpc.2012.02.002].

Increasing radial solutions for Neumann problems without growth restrictions

NORIS, BENEDETTA;
2012

Abstract

We study the existence of positive increasing radial solutions for superlinear Neumann problems in the ball. We do not impose any growth condition on the nonlinearity at infinity and our assumptions allow for interactions with the spectrum. In our approach we use both topological and variational arguments, and we overcome the lack of compactness by considering the cone of nonnegative, nondecreasing radial functions of H1(B)
Articolo in rivista - Articolo scientifico
Supercritical problems; Krasnoselskii fixed point; Invariant cone; Gradient flow
English
2012
29
4
573
588
open
Bonheure, D., Noris, B., Weth, T. (2012). Increasing radial solutions for Neumann problems without growth restrictions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 29(4), 573-588 [10.1016/j.anihpc.2012.02.002].
File in questo prodotto:
File Dimensione Formato  
10.1016-j.anihpc.2012.02.002.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Altro
Dimensione 308.81 kB
Formato Adobe PDF
308.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/48998
Citazioni
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 47
Social impact