We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation -Δu+V(x)u+ar2u=f(u)-λg(u),x=(y,z)∈RK×RN-K,r=|y|,where 0∉σ(-Δ+ar2+V(x)).As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.
Bernini, F., Bieganowski, B. (2022). Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 61(5) [10.1007/s00526-022-02297-2].
Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities
Bernini F.;
2022
Abstract
We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation -Δu+V(x)u+ar2u=f(u)-λg(u),x=(y,z)∈RK×RN-K,r=|y|,where 0∉σ(-Δ+ar2+V(x)).As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bernini, Bieganowski- 2022-Calc. Var.-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
413.29 kB
Formato
Adobe PDF
|
413.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.