The Bochner–Riesz means are defined by the Fourier multiplier operators(formula presented). Here we prove that if f has β derivatives in Lp(Rd), then (formula presented)converges pointwise to f (x) as R → + ∞ with a possible exception of a set of points with Hausdorff dimension at most d – βp if one of the following conditions holds: either α > (d – 1)|1/p – 1/2|, or α > d(1/2 – 1/p) – 1/2 and α + β ≥ (d – 1)/2. If β > d/p, then pointwise convergence holds everywhere.

Colzani, L., Volpi, S. (2013). Pointwise convergence of Bochner-Riesz means in Sobolev spaces. In M.A. Piccardello (a cura di), Trends in harmonic analysis (pp. 135-146). Springer [10.1007/978-88-470-2853-1_7].

Pointwise convergence of Bochner-Riesz means in Sobolev spaces

Colzani, L;
2013

Abstract

The Bochner–Riesz means are defined by the Fourier multiplier operators(formula presented). Here we prove that if f has β derivatives in Lp(Rd), then (formula presented)converges pointwise to f (x) as R → + ∞ with a possible exception of a set of points with Hausdorff dimension at most d – βp if one of the following conditions holds: either α > (d – 1)|1/p – 1/2|, or α > d(1/2 – 1/p) – 1/2 and α + β ≥ (d – 1)/2. If β > d/p, then pointwise convergence holds everywhere.
Capitolo o saggio
Bochner–Riesz means; Hausdorff dimension; Sobolev space;
English
Trends in harmonic analysis
Piccardello, MA
5-dic-2012
2013
9788847028524
3 SINDAMS
Springer
135
146
Colzani, L., Volpi, S. (2013). Pointwise convergence of Bochner-Riesz means in Sobolev spaces. In M.A. Piccardello (a cura di), Trends in harmonic analysis (pp. 135-146). Springer [10.1007/978-88-470-2853-1_7].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/48986
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
Social impact