We obtain a vanishing result for solutions of the inequality $|\Delta u| \leq q_1 |u| + q_2 |\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_1$ and $q_2$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.

De Ponti, N., Pigola, S., Veronelli, G. (2024). Unique continuation at infinity: Carleman estimates on general warped cylinders. INTERNATIONAL MATHEMATICS RESEARCH NOTICES [10.1093/imrn/rnae147].

Unique continuation at infinity: Carleman estimates on general warped cylinders

De Ponti, N;Pigola, S;Veronelli, G
2024

Abstract

We obtain a vanishing result for solutions of the inequality $|\Delta u| \leq q_1 |u| + q_2 |\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_1$ and $q_2$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.
Articolo in rivista - Articolo scientifico
Unique continuation at infinity, Carleman estimates, Riemannian manifolds, Warped Cylindrical ends
English
4-lug-2024
2024
rnae147
partially_open
De Ponti, N., Pigola, S., Veronelli, G. (2024). Unique continuation at infinity: Carleman estimates on general warped cylinders. INTERNATIONAL MATHEMATICS RESEARCH NOTICES [10.1093/imrn/rnae147].
File in questo prodotto:
File Dimensione Formato  
DePonti-2024-IMRN-preprint.pdf

accesso aperto

Descrizione: arXiv preprint
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 282.78 kB
Formato Adobe PDF
282.78 kB Adobe PDF Visualizza/Apri
DePonti-2024-IMRN-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 671.69 kB
Formato Adobe PDF
671.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/486919
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact