The hydrophobic-polar model has been widely studied in the field of protein structure prediction both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization and Markov Chain Monte Carlo that we called Hybrid Monte Carlo Ant Colony Optimization. We describe this method and compare results obtained on well known HP instances in the 3-dimensional cubic lattice to those obtained with standard Ant Colony optimization and Simulated Annealing. All methods were implemented using an unconstrained neighborhood and a modified objective function to prevent the creation of overlapping walks. Results show that our methods perform better than the other heuristics in all benchmark instances.
Citrolo, A., Mauri, G. (2013). A Hybrid Monte Carlo Ant Colony Optimization Approach for Protein Structure Prediction in the HP Model. In Wivace 2013 – Italian Workshop on Artificial Life and Evolutionary Computation (pp.61-69). Open Publishing Association [10.4204/EPTCS.130.9].
A Hybrid Monte Carlo Ant Colony Optimization Approach for Protein Structure Prediction in the HP Model
Mauri, G
2013
Abstract
The hydrophobic-polar model has been widely studied in the field of protein structure prediction both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization and Markov Chain Monte Carlo that we called Hybrid Monte Carlo Ant Colony Optimization. We describe this method and compare results obtained on well known HP instances in the 3-dimensional cubic lattice to those obtained with standard Ant Colony optimization and Simulated Annealing. All methods were implemented using an unconstrained neighborhood and a modified objective function to prevent the creation of overlapping walks. Results show that our methods perform better than the other heuristics in all benchmark instances.File | Dimensione | Formato | |
---|---|---|---|
R121-Wivace Citrolo.pdf
accesso aperto
Dimensione
214.9 kB
Formato
Adobe PDF
|
214.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.