Cauchy partial data imply the uniqueness of the potential. Complex geometrical optics solutions are needed to prove the claim.

Crosta, G. (2012). Mathematical Review: MR2794369 (2012f:35574) Guillarmou, Colin; Tzou, Leo, "Calderón inverse problem with partial data on Riemann surfaces.". MATHEMATICAL REVIEWS, 2012f, 2012f:35574.

Mathematical Review: MR2794369 (2012f:35574) Guillarmou, Colin; Tzou, Leo, "Calderón inverse problem with partial data on Riemann surfaces."

CROSTA, GIOVANNI FRANCO FILIPPO
2012

Abstract

Cauchy partial data imply the uniqueness of the potential. Complex geometrical optics solutions are needed to prove the claim.
Recensione in rivista
Riemann surface with boundary; Cauchy partial data; Morse holomorphic functions; complex geometrical optics; stationary phase; inverse scattering
English
2012
2012f
2012f:35574
none
Crosta, G. (2012). Mathematical Review: MR2794369 (2012f:35574) Guillarmou, Colin; Tzou, Leo, "Calderón inverse problem with partial data on Riemann surfaces.". MATHEMATICAL REVIEWS, 2012f, 2012f:35574.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/48281
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact