We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved "separate universe" N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth & Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b2(b1) and b3(b1), which work well over a range of redshifts.
Lazeyras, T., Wagner, C., Baldauf, T., Schmidt, F. (2016). Precision measurement of the local bias of dark matter halos. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016(2) [10.1088/1475-7516/2016/02/018].
Precision measurement of the local bias of dark matter halos
Lazeyras T.;
2016
Abstract
We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved "separate universe" N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth & Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b2(b1) and b3(b1), which work well over a range of redshifts.File | Dimensione | Formato | |
---|---|---|---|
Lazeyras-2016-JCAP-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.