We deepen the study of Dirichlet eigenvalues in bounded domains where a thin tube is attached to the boundary. As its section shrinks to a point, the problem is spectrally stable and we quantitatively investigate the rate of convergence of the perturbed eigenvalues. We detect the proper quantity which sharply measures the perturbation's magnitude. It is a sort of torsional rigidity of the tube's section relative to the domain. This allows us to sharply describe the asymptotic behavior of the perturbed spectrum, even when eigenvalues converge to a multiple one. The final asymptotics of eigenbranches depend on the local behavior near the junction of eigenfunctions chosen in a proper way. The present techniques also apply when the perturbation of the Dirichlet eigenvalue problem consists in prescribing homogeneous Neumann boundary conditions on a small portion of the boundary of the domain.
Abatangelo, L., Ognibene, R. (2024). Sharp Behavior of Dirichlet–Laplacian Eigenvalues for a Class of Singularly Perturbed Problems. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 56(1), 474-500 [10.1137/23m1564444].
Sharp Behavior of Dirichlet–Laplacian Eigenvalues for a Class of Singularly Perturbed Problems
Abatangelo, L;Ognibene, R
2024
Abstract
We deepen the study of Dirichlet eigenvalues in bounded domains where a thin tube is attached to the boundary. As its section shrinks to a point, the problem is spectrally stable and we quantitatively investigate the rate of convergence of the perturbed eigenvalues. We detect the proper quantity which sharply measures the perturbation's magnitude. It is a sort of torsional rigidity of the tube's section relative to the domain. This allows us to sharply describe the asymptotic behavior of the perturbed spectrum, even when eigenvalues converge to a multiple one. The final asymptotics of eigenbranches depend on the local behavior near the junction of eigenfunctions chosen in a proper way. The present techniques also apply when the perturbation of the Dirichlet eigenvalue problem consists in prescribing homogeneous Neumann boundary conditions on a small portion of the boundary of the domain.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.