We tackle the (classic) problem of minimizing (non)deterministic finite automata. The algorithm we put forward has the peculiarity of being incremental, i.e., the minimization proceeds by successive iterations, each producing a partially minimized automaton language-equivalent to the input one. Our algorithm builds upon Almeida et al. from 2014, fixing a minor mistake and generalizing it to the nondeterministic case. It relies on a colouring procedure of a graph associated to the automaton, keeping track of partial information. After dealing with the deterministic case, we extend this idea to the bisimulation-minimization of nondeterministic automata. The algorithms for both the deterministic and the nondeterministic cases run in time O(nm) for an automaton with n states and m transitions. The complexity for the deterministic case matches the complexity claimed by Almeida et al. The nondeterministic case improves the fastest known incremental algorithm for this problem. We conclude introducing and using a notion of signature of a state, whose aim is to exploit pre-computed information potentially available, to speed-up the process. A signature is used to produce an initial partition of the automaton's states and can be easily integrated in both the incremental and the non-incremental algorithm.

Bianchini, C., Policriti, A., Riccardi, B., Romanello, R. (2024). Incremental NFA Minimization. THEORETICAL COMPUTER SCIENCE, 1004(12 July 2024) [10.1016/j.tcs.2024.114621].

Incremental NFA Minimization

Riccardi, B
;
2024

Abstract

We tackle the (classic) problem of minimizing (non)deterministic finite automata. The algorithm we put forward has the peculiarity of being incremental, i.e., the minimization proceeds by successive iterations, each producing a partially minimized automaton language-equivalent to the input one. Our algorithm builds upon Almeida et al. from 2014, fixing a minor mistake and generalizing it to the nondeterministic case. It relies on a colouring procedure of a graph associated to the automaton, keeping track of partial information. After dealing with the deterministic case, we extend this idea to the bisimulation-minimization of nondeterministic automata. The algorithms for both the deterministic and the nondeterministic cases run in time O(nm) for an automaton with n states and m transitions. The complexity for the deterministic case matches the complexity claimed by Almeida et al. The nondeterministic case improves the fastest known incremental algorithm for this problem. We conclude introducing and using a notion of signature of a state, whose aim is to exploit pre-computed information potentially available, to speed-up the process. A signature is used to produce an initial partition of the automaton's states and can be easily integrated in both the incremental and the non-incremental algorithm.
Articolo in rivista - Articolo scientifico
Automata; Bisimulation; Incremental; Minimization;
English
9-mag-2024
2024
1004
12 July 2024
114621
open
Bianchini, C., Policriti, A., Riccardi, B., Romanello, R. (2024). Incremental NFA Minimization. THEORETICAL COMPUTER SCIENCE, 1004(12 July 2024) [10.1016/j.tcs.2024.114621].
File in questo prodotto:
File Dimensione Formato  
Bianchini-2024-TCS-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 590.16 kB
Formato Adobe PDF
590.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/477579
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact