We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending on a small parameter in front of the second-order term. Through the nonlinear semigroup associated with such an equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its solutions, depending on the small parameter. We show that a large deviations principle holds and we give an explicit description of the action functional.
Cerrai, S., Guatteri, G., Tessitore, G. (2024). Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter. JOURNAL OF FUNCTIONAL ANALYSIS, 286(12 (15 June 2024)), 1-57 [10.1016/j.jfa.2024.110418].
Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter
Tessitore G.
2024
Abstract
We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending on a small parameter in front of the second-order term. Through the nonlinear semigroup associated with such an equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its solutions, depending on the small parameter. We show that a large deviations principle holds and we give an explicit description of the action functional.File | Dimensione | Formato | |
---|---|---|---|
Cerrai-2024-JFA-VoR.pdf
Solo gestori archivio
Descrizione: JFA 2024
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
692.16 kB
Formato
Adobe PDF
|
692.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cerrai-2024-AAM.pdf
accesso aperto
Descrizione: Arxiv
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
396.18 kB
Formato
Adobe PDF
|
396.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.