We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending on a small parameter in front of the second-order term. Through the nonlinear semigroup associated with such an equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its solutions, depending on the small parameter. We show that a large deviations principle holds and we give an explicit description of the action functional.

Cerrai, S., Guatteri, G., Tessitore, G. (2024). Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter. JOURNAL OF FUNCTIONAL ANALYSIS, 286(12 (15 June 2024)), 1-57 [10.1016/j.jfa.2024.110418].

Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter

Tessitore G.
2024

Abstract

We study a class of quasi-linear parabolic equations defined on a separable Hilbert space, depending on a small parameter in front of the second-order term. Through the nonlinear semigroup associated with such an equation, we introduce the corresponding SPDE and we study the asymptotic behavior of its solutions, depending on the small parameter. We show that a large deviations principle holds and we give an explicit description of the action functional.
Articolo in rivista - Articolo scientifico
Large Deviations; PDEs in infinite dimension; Stochastic PDEs;
English
26-mar-2024
2024
286
12 (15 June 2024)
1
57
110418
partially_open
Cerrai, S., Guatteri, G., Tessitore, G. (2024). Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter. JOURNAL OF FUNCTIONAL ANALYSIS, 286(12 (15 June 2024)), 1-57 [10.1016/j.jfa.2024.110418].
File in questo prodotto:
File Dimensione Formato  
Cerrai-2024-JFA-VoR.pdf

Solo gestori archivio

Descrizione: JFA 2024
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 692.16 kB
Formato Adobe PDF
692.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Cerrai-2024-AAM.pdf

accesso aperto

Descrizione: Arxiv
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 396.18 kB
Formato Adobe PDF
396.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/477386
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact