Climate change is a global phenomenon, but in the Arctic region the surface temperature increases up to 3 – 4 times. This phenomenon, known as ‘Arctic Amplification’ (AA), has significant consequences for the ecosystem and it is induced by positive feedbacks. The causes beyond it are still not entirely clear. In addition to internal feedbacks (e.g. surface albedo feedback), also external factors, such as the poleward energy transport (PET), contribute to AA. Mechanisms that preferentially heat higher latitudes inhibit the atmospheric transport northward, while mechanisms that preferentially heat lower latitudes boost it. The latter include aerosol forcings, whose role in the AA is one of the least clear aspects and it is due to an interplay of local and remote effects. In particular, the light absorbing aerosols (LAA) interact directly with solar radiation, exerting a positive forcing. They have a local Arctic forcing when sunlight is present; moreover their concentrations at lower latitudes can cause an energy (heat) surplus that is then transported northward. Therefore, the main question is: total LAA contribution to AA is due to an interplay (they may add up or hinder each other) of local and remote effects, but one of them is definitely greater than the other and thus prevalent in the AA? Most of the studies which have tried to answer this question are modelling ones. In order to fill this gap, we took part in 5 measurements campaigns on board research vessels (3 Gdansk and North of Svalbard in summer; 1 in the Baltic Sea in winter and 1 in the tropical North Atlantic in winter) in order to determine aerosol properties and LAA direct forcing in terms of heating rate (HR) at different latitudes, by means of a completely experimental method, for the first time. We found clear macroscopic differences (in terms of aerosol composition) moving northward and away from human settlements. Within the Arctic, the lowest anthropogenic influence was found in east and north of Svalbard, while Longyearbyen represented an important emission hotspot in the region. These differences within the Arctic have been confirmed by high-resolution measurements. There was a clear latitudinal negative trend in eBC atmospheric concentrations. This, along with a decrease in solar radiation northward, caused a sharp poleward decline in HR: there were two orders of magnitude difference between mid-latitudes and the Arctic. As a result, there was a great energy gradient between lower latitudes and North of Svalbard: we found that, in a single summer day, the energy added by the LAA forcing within the PBL was 60.66 PJ/day in the Baltic area, 27.52 PJ/day in the Norwegian Sea and 1.23 PJ/day in the Arctic. AA is larger in fall and winter, but the process is initiated in summer; therefore, summer is a key season, when additional energy (extra heat) triggers those feedbacks that then lead to AA in the following months. Winter data highlighted the presence of an energy gradient also in winter between midlatitudes and the Arctic, but lower than in summer. In winter an important role in the energy gradient could be played by the tropical North Atlantic, where the presence of mineral dust and biomass burning aerosol, transported from the Saharan region, can induce a rather high HR. In the future, a reduction in emissions at mid-latitudes, will decrease the PET. Local LAA emissions, instead, could rise due to an increase in human activities and natural sources. Already nowadays, we measured non-negligible maximum HR values in the anthropized fjords of Svalbard, well above the Arctic Ocean background values. Therefore, the interplay between aerosol local and remote effects may change. It is thus necessary to continue to monitor this phenomenon and collect new data (also in winter) over a wider area. Our data can help to better understand how the LAA influence the Arctic climate and provide experimental observations to improve the models.

Il cambiamento climatico è un fenomeno globale, ma il tasso di riscaldamento in Artico è fino a 3-4 volte più veloce. Questo fenomeno, noto come Amplificazione Artica (AA), è indotto da feedbacks positivi. Le cause non sono ancora del tutto chiare. Oltre ai feedback interni, anche fattori esterni, come il trasporto di energia verso il polo (PET), contribuiscono all’AA. I meccanismi che scaldano in via preferenziale le alte latitudini inibiscono il PET atmospferico, mentre quelli che scaldano prevalentemente le latitudini inferiori lo inducono. Tra questi ultimi rientrano gli aerosols, il cui ruolo è uno degli aspetti meno chiari. Esso è dovuto ad un interplay di effetti locali e remoti. In particolare, i light absorbing aerosols (LAA) interagiscono direttamente con la radiazione solare, esercitando un forcing positivo. Il loro forcing locale è attivo in Artico nel periodo in cui la luce solare è presente. Inoltre, le loro concentrazioni alle latitudini inferiori possono indurre un surplus di energia (calore) che è poi trasportat verso nord. La domanda principale quindi è: quale dei due effetti è predominante nell’ influenzare il clima artico? La maggior parte degli studi attuali sono modellistici. Per questo motivo abbiamo partecipato a 5 campagne a bordo di navi da ricerca (3 estive tra Danzica e l’Artico, 1 invernale nel Baltico ed 1 invernale nel Nord Atlantico tropicale), così da determinare le proprietà dell’aerosol ed il forcing diretto dei LAA (in termini di heating rate, HR) a latitudini differenti, tramite un metodo del tutto sperimentale. Abbiamo trovato chiare differenze latitudinali (in termini di composizione chimica dell’aerosol) muovendoci verso nord ed allontanandoci dagli insediamenti umani. All’interno dell’Artico, la minore influenza antropica è stata trovata ad est e a nord delle Svalbard, mentre Longyearbyen si è rivelato essere un hotspot emissivo importante. C’è un chiaro trend latitudinale negativo nelle concentrazioni di eBC. Questo, unitamente ad un decremento della radiazione solare verso nord, ha determinato un netto declino verso il polo dell’HR. Abbiamo misurato due ordini di grandezza di differenza tra le medie latitudini e l’Artico. Di conseguenza, c’è un significativo gradiente energetico tra le latitudini inferiori ed il nord delle Svalbard, Abbiamo infatti trovato che, in un singolo giorno estivo, sono stati aggiunti all’interno del PBL 60.66 PJ/day nell’area Baltica, 27.52 PJ/day nel Mar di Norvegia e 1.23 PJ/day in Artico. L’AA è maggiore in autunno e inverno, ma il meccanismo inizia in estate; perciò l’estate è una stagione chiave, in cui un surplus di calore (energia) innesca quei feedbacks che porteranno poi all’AA nei mesi successivi. I dati invernali hanno evidenziato la presenza di un gradiente energetico anche in questa stagione (tra medie latitudini e Polo), ma inferiore rispetto all’estate. In questa stagione, un ruolo importante nel definire il gradiente energetico potrebbe essere giocato dall’Atlantico Nord Tropicale. A quelle latitudini, la presenza di polvere minerale e aerosol da combustione di biomasse, trasportato dalla regione Sahariana, può indurre un HR piuttosto alto. In futuro una riduzione delle emissioni alle medie latitudini porterà ad un del PET. Le emissioni locali di LAA, invece, potrebbero aumentare, a causa di un incremento nelle sorgenti naturali e di attività umane nell’area. Già oggi, abbiamo misurato valori massimi di HR non trascurabili nei fiordi antropizzati delle Svalbard, bel al di sopra del valore di fondo dell’Oceano Artico. Perciò l’importanza relativa degli effetti locali e remoti dell’aerosol potrebbe cambiare in futuro. É quindi necessario continuare a monitorare questo fenomeno e raccogliere nuovi dati. I nostri dati potranno aiutare a comprendere come i LAA influenzano il clima artico e fornire dati sperimentali per migliorare i modelli.

(2024). “Three-dimensional study of the atmospheric heating rate from Equator to the Arctic”. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

“Three-dimensional study of the atmospheric heating rate from Equator to the Arctic”

LOSI, NICCOLO'
2024

Abstract

Climate change is a global phenomenon, but in the Arctic region the surface temperature increases up to 3 – 4 times. This phenomenon, known as ‘Arctic Amplification’ (AA), has significant consequences for the ecosystem and it is induced by positive feedbacks. The causes beyond it are still not entirely clear. In addition to internal feedbacks (e.g. surface albedo feedback), also external factors, such as the poleward energy transport (PET), contribute to AA. Mechanisms that preferentially heat higher latitudes inhibit the atmospheric transport northward, while mechanisms that preferentially heat lower latitudes boost it. The latter include aerosol forcings, whose role in the AA is one of the least clear aspects and it is due to an interplay of local and remote effects. In particular, the light absorbing aerosols (LAA) interact directly with solar radiation, exerting a positive forcing. They have a local Arctic forcing when sunlight is present; moreover their concentrations at lower latitudes can cause an energy (heat) surplus that is then transported northward. Therefore, the main question is: total LAA contribution to AA is due to an interplay (they may add up or hinder each other) of local and remote effects, but one of them is definitely greater than the other and thus prevalent in the AA? Most of the studies which have tried to answer this question are modelling ones. In order to fill this gap, we took part in 5 measurements campaigns on board research vessels (3 Gdansk and North of Svalbard in summer; 1 in the Baltic Sea in winter and 1 in the tropical North Atlantic in winter) in order to determine aerosol properties and LAA direct forcing in terms of heating rate (HR) at different latitudes, by means of a completely experimental method, for the first time. We found clear macroscopic differences (in terms of aerosol composition) moving northward and away from human settlements. Within the Arctic, the lowest anthropogenic influence was found in east and north of Svalbard, while Longyearbyen represented an important emission hotspot in the region. These differences within the Arctic have been confirmed by high-resolution measurements. There was a clear latitudinal negative trend in eBC atmospheric concentrations. This, along with a decrease in solar radiation northward, caused a sharp poleward decline in HR: there were two orders of magnitude difference between mid-latitudes and the Arctic. As a result, there was a great energy gradient between lower latitudes and North of Svalbard: we found that, in a single summer day, the energy added by the LAA forcing within the PBL was 60.66 PJ/day in the Baltic area, 27.52 PJ/day in the Norwegian Sea and 1.23 PJ/day in the Arctic. AA is larger in fall and winter, but the process is initiated in summer; therefore, summer is a key season, when additional energy (extra heat) triggers those feedbacks that then lead to AA in the following months. Winter data highlighted the presence of an energy gradient also in winter between midlatitudes and the Arctic, but lower than in summer. In winter an important role in the energy gradient could be played by the tropical North Atlantic, where the presence of mineral dust and biomass burning aerosol, transported from the Saharan region, can induce a rather high HR. In the future, a reduction in emissions at mid-latitudes, will decrease the PET. Local LAA emissions, instead, could rise due to an increase in human activities and natural sources. Already nowadays, we measured non-negligible maximum HR values in the anthropized fjords of Svalbard, well above the Arctic Ocean background values. Therefore, the interplay between aerosol local and remote effects may change. It is thus necessary to continue to monitor this phenomenon and collect new data (also in winter) over a wider area. Our data can help to better understand how the LAA influence the Arctic climate and provide experimental observations to improve the models.
CITTERIO, SANDRA
FERRERO, LUCA
Arctic Amplification; Black carbon; direct forcing; aerosol; clmate change
Arctic Amplification; Black carbon; direct forcing; aerosol; clmate change
CHIM/12 - CHIMICA DELL'AMBIENTE E DEI BENI CULTURALI
English
16-mag-2024
36
2022/2023
open
(2024). “Three-dimensional study of the atmospheric heating rate from Equator to the Arctic”. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_748322.pdf

accesso aperto

Descrizione: “Three-dimensional study of the atmospheric heating rate from Equator to the Arctic”
Tipologia di allegato: Doctoral thesis
Dimensione 9.93 MB
Formato Adobe PDF
9.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/477059
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact