Complete elimination of B-cell acute lymphoblastic leukemia (B-ALL) by a risk-adapted primary treatment approach remains a clinical key objective, which fails in up to a third of patients. Recent evidence has implicated subpopulations of B-ALL cells with stem-like features in disease persistence. We hypothesized that microRNA-126, a core regulator of hematopoietic and leukemic stem cells, may resolve intratumor heterogeneity in B-ALL and uncover therapy-resistant subpopulations. We exploited patient-derived xenograft (PDX) models with B-ALL cells transduced with a miR-126 reporter allowing the prospective isolation of miR-126(high) cells for their functional and transcriptional characterization. Discrete miR-126(high) populations, often characterized by MIR126 locus demethylation, were identified in 8/9 PDX models and showed increased repopulation potential, in vivo chemotherapy resistance and hallmarks of quiescence, inflammation and stress-response pathway activation. Cells with a miR-126(high) transcriptional profile were identified as distinct disease subpopulations by single-cell RNA sequencing in diagnosis samples from adult and pediatric B-ALL. Expression of miR-126 and locus methylation were tested in several pediatric and adult B-ALL cohorts, which received standardized treatment. High microRNA-126 levels and locus demethylation at diagnosis associate with suboptimal response to induction chemotherapy (MRD > 0.05% at day +33 or MRD+ at day +78). [Figure not available: see fulltext.].

Caserta, C., Nucera, S., Barcella, M., Fazio, G., Naldini, M., Pagani, R., et al. (2023). miR-126 identifies a quiescent and chemo-resistant human B-ALL cell subset that correlates with minimal residual disease. LEUKEMIA, 37(10), 1994-2005 [10.1038/s41375-023-02009-5].

miR-126 identifies a quiescent and chemo-resistant human B-ALL cell subset that correlates with minimal residual disease

Nucera S.;Fazio G.;Pagani R.;Rambaldi A.;Valsecchi M. G.;Biondi A.;Cazzaniga G.;
2023

Abstract

Complete elimination of B-cell acute lymphoblastic leukemia (B-ALL) by a risk-adapted primary treatment approach remains a clinical key objective, which fails in up to a third of patients. Recent evidence has implicated subpopulations of B-ALL cells with stem-like features in disease persistence. We hypothesized that microRNA-126, a core regulator of hematopoietic and leukemic stem cells, may resolve intratumor heterogeneity in B-ALL and uncover therapy-resistant subpopulations. We exploited patient-derived xenograft (PDX) models with B-ALL cells transduced with a miR-126 reporter allowing the prospective isolation of miR-126(high) cells for their functional and transcriptional characterization. Discrete miR-126(high) populations, often characterized by MIR126 locus demethylation, were identified in 8/9 PDX models and showed increased repopulation potential, in vivo chemotherapy resistance and hallmarks of quiescence, inflammation and stress-response pathway activation. Cells with a miR-126(high) transcriptional profile were identified as distinct disease subpopulations by single-cell RNA sequencing in diagnosis samples from adult and pediatric B-ALL. Expression of miR-126 and locus methylation were tested in several pediatric and adult B-ALL cohorts, which received standardized treatment. High microRNA-126 levels and locus demethylation at diagnosis associate with suboptimal response to induction chemotherapy (MRD > 0.05% at day +33 or MRD+ at day +78). [Figure not available: see fulltext.].
Articolo in rivista - Articolo scientifico
B-ALL cell; chemo-resistant; minimal residual disease
English
28-ago-2023
2023
37
10
1994
2005
none
Caserta, C., Nucera, S., Barcella, M., Fazio, G., Naldini, M., Pagani, R., et al. (2023). miR-126 identifies a quiescent and chemo-resistant human B-ALL cell subset that correlates with minimal residual disease. LEUKEMIA, 37(10), 1994-2005 [10.1038/s41375-023-02009-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/477028
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact