The predominant use of synthetic materials, such as fiberglass and polymeric foams, for thermal and acoustic insulation in the construction sector contributes to the recalcitrant waste accumulation in the environment and is not economically sustainable in the long term. This is because they are developed with linear economy standards, they are neither reusable nor recyclable, and, at their end of lifecycle, they are not compostable, with a great amount of them finishing in landfills. This work is focused on the development of natural, self-growing mycelium-biocomposites as sustainable alternatives to these conventional synthetic materials. Specifically, fungal mycelium derived from the nonpathogenic fungal strain Pleurotus ostreatus is fed by coffee silverskin flakes, a lignocellulosic agrowaste from roasted coffee seeds, forming 3D biocomposites. The physicochemical properties of the obtained composite are thoroughly investigated, with a final focus on their thermal and acoustic insulation properties. As proved, the natural agrowaste-mycelium composites possess high porosity and thus low density, good thermal properties, and satisfactory sound absorption capability. Such properties combined with the minimal energetic requirements for their growth and their fully compostable end-of-life nature make them valuable alternatives for thermal and acoustic insulation in building construction, among other applications, promoting environmental and economic sustainability.
Bonga, K., Bertolacci, L., Contardi, M., Paul, U., Zafar, M., Mancini, G., et al. (2024). Mycelium Agrowaste-Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction. MACROMOLECULAR MATERIALS AND ENGINEERING [10.1002/mame.202300449].
Mycelium Agrowaste-Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction
Contardi M.;
2024
Abstract
The predominant use of synthetic materials, such as fiberglass and polymeric foams, for thermal and acoustic insulation in the construction sector contributes to the recalcitrant waste accumulation in the environment and is not economically sustainable in the long term. This is because they are developed with linear economy standards, they are neither reusable nor recyclable, and, at their end of lifecycle, they are not compostable, with a great amount of them finishing in landfills. This work is focused on the development of natural, self-growing mycelium-biocomposites as sustainable alternatives to these conventional synthetic materials. Specifically, fungal mycelium derived from the nonpathogenic fungal strain Pleurotus ostreatus is fed by coffee silverskin flakes, a lignocellulosic agrowaste from roasted coffee seeds, forming 3D biocomposites. The physicochemical properties of the obtained composite are thoroughly investigated, with a final focus on their thermal and acoustic insulation properties. As proved, the natural agrowaste-mycelium composites possess high porosity and thus low density, good thermal properties, and satisfactory sound absorption capability. Such properties combined with the minimal energetic requirements for their growth and their fully compostable end-of-life nature make them valuable alternatives for thermal and acoustic insulation in building construction, among other applications, promoting environmental and economic sustainability.File | Dimensione | Formato | |
---|---|---|---|
Bonga-2024-MME-VoR.pdf
accesso aperto
Descrizione: Mycelium Agrowaste-Bound Biocomposites as Thermal andAcoustic Insulation Materials in Building Construction
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.