Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.
Pagnacco, C., Kravicz, M., Sica, F., Fontanini, V., González de San Román, E., Lund, R., et al. (2024). In Vitro Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(C6F5)3 under Dry and Wet Conditions. BIOMACROMOLECULES, 25(6), 3583-3595 [10.1021/acs.biomac.4c00210].
In Vitro Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(C6F5)3 under Dry and Wet Conditions
Kravicz M. H.;Sica F. S.;Fontanini V.;Re F.
;
2024
Abstract
Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.File | Dimensione | Formato | |
---|---|---|---|
Pagnacco-2024-Biomacromolecul-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
6.15 MB
Formato
Adobe PDF
|
6.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.