Let (Formula presented.) be a flat analytic groupoid (Formula presented.) such that the holomorphic map (Formula presented.) is finite. In this paper, we prove that there exist a (unique up to isomorphism) complex space (Formula presented.) and a holomorphic map (Formula presented.) which is a GC quotient (see Definition 3.1). This extends to analytic groupoids the Main Theorem proved by Keel and Mori in the algebraic context (Keel and Mori in Ann Math 145(1):193–213, 1997, 1.1 Theorem).

Borghesi, S., Tomassini, G. (2015). The coarse moduli space of a flat analytic groupoid. ANNALI DI MATEMATICA PURA ED APPLICATA, 194(1), 247-257 [10.1007/s10231-013-0373-3].

The coarse moduli space of a flat analytic groupoid

BORGHESI, SIMONE;
2015

Abstract

Let (Formula presented.) be a flat analytic groupoid (Formula presented.) such that the holomorphic map (Formula presented.) is finite. In this paper, we prove that there exist a (unique up to isomorphism) complex space (Formula presented.) and a holomorphic map (Formula presented.) which is a GC quotient (see Definition 3.1). This extends to analytic groupoids the Main Theorem proved by Keel and Mori in the algebraic context (Keel and Mori in Ann Math 145(1):193–213, 1997, 1.1 Theorem).
Articolo in rivista - Articolo scientifico
Analytic groupoids Several complex variables Quotients of complex spaces Coarse moduli space
English
247
257
11
Borghesi, S., Tomassini, G. (2015). The coarse moduli space of a flat analytic groupoid. ANNALI DI MATEMATICA PURA ED APPLICATA, 194(1), 247-257 [10.1007/s10231-013-0373-3].
Borghesi, S; Tomassini, G
File in questo prodotto:
File Dimensione Formato  
The coarse moduli space.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 189.99 kB
Formato Adobe PDF
189.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/47625
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact