For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of Formula Presented, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the epos-lhc generator predictions are a factor of 2 below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the epos-lhc, qgsjet ii, and hijing predictions are all at least a factor of 5 lower than the data. The latter effect might be explained by a significant contribution of ultraperipheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.

Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Dragicevic, M., Ero, J., et al. (2023). First measurement of the forward rapidity gap distribution in Formula Presented collisions at Formula Presented. PHYSICAL REVIEW D, 108(9) [10.1103/PhysRevD.108.092004].

First measurement of the forward rapidity gap distribution in Formula Presented collisions at Formula Presented

Xiao J.;Benaglia A.;Beschi A.;Brivio F.;Cetorelli F.;Ciriolo V.;De Guio F.;Dinardo M. E.;Ghezzi A.;Govoni P.;Guzzi L.;Malberti M.;Monti F.;Moroni L.;Paganoni M.;Ragazzi S.;Tabarelli de Fatis T.;Valsecchi D.;Zuolo D.;Ortona G.;Massironi A.;Pigazzini S.;Gerosa R.;Lucchini M. T.;
2023

Abstract

For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of Formula Presented, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the epos-lhc generator predictions are a factor of 2 below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the epos-lhc, qgsjet ii, and hijing predictions are all at least a factor of 5 lower than the data. The latter effect might be explained by a significant contribution of ultraperipheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.
Articolo in rivista - Articolo scientifico
Boson; Partons; Higgs Bosons
English
2023
108
9
092004
none
Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Dragicevic, M., Ero, J., et al. (2023). First measurement of the forward rapidity gap distribution in Formula Presented collisions at Formula Presented. PHYSICAL REVIEW D, 108(9) [10.1103/PhysRevD.108.092004].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/475627
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact