A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at root s = 13TeV at the LHC during 2016-2018. The data set corresponds to an integrated luminosity of 138 fb(-1). Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as the pT of on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.

Hayrapetyan, A., Tumasyan, A., Adam, W., Andrejkovic, J., Bergauer, T., Chatterjee, S., et al. (2023). Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory. JOURNAL OF HIGH ENERGY PHYSICS, 2023(12) [10.1007/JHEP12(2023)068].

Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory

Benaglia, A.;Boldrini, G.;Brivio, F.;Cetorelli, F.;De Guio, F.;Dinardo, M. E.;Ghezzi, A.;Govoni, P.;Guzzi, L.;Lucchini, M. T.;Malberti, M.;Massironi, A.;Moroni, L.;Paganoni, M.;Pinolini, B. S.;Ragazzi, S.;Tabarelli de Fatis, T.;Zuolo, D.;Ortona, G.;Gerosa, R.;
2023

Abstract

A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at root s = 13TeV at the LHC during 2016-2018. The data set corresponds to an integrated luminosity of 138 fb(-1). Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as the pT of on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.
Articolo in rivista - Articolo scientifico
Beyond Standard Model; Hadron-Hadron Scattering; Top Physics
English
12-dic-2023
2023
2023
12
68
none
Hayrapetyan, A., Tumasyan, A., Adam, W., Andrejkovic, J., Bergauer, T., Chatterjee, S., et al. (2023). Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory. JOURNAL OF HIGH ENERGY PHYSICS, 2023(12) [10.1007/JHEP12(2023)068].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/474823
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
Social impact