The dynamic stochastic blockmodel is commonly used to analyze longitudinal network data when multiple snapshots are observed over time. The variational expectation-maximization (VEM) algorithm is typically employed for maximum likelihood inference to allocate nodes to groups dynamically. To address the problem of multiple local maxima, which may arise in this context, we propose modifying the VEM according to an evolutionary algorithm to explore the whole parameter space. A simulation study on dynamic networks and an application illustrate the proposal comparing the performance with that of the VEM algorithm.

Brusa, L., Pennoni, F. (2023). Improving clustering in temporal networks through an evolutionary algorithm. In P. Coretto, G. Giordano, M. La Rocca, M.L. Parrella, C. Rampichini (a cura di), Book of Abstracts and Short Papers, 14th Scientic Meeting of the Classication and Data Analysis Group, Salerno, September 11-13, 2023 (pp. 370-373). Pearson.

Improving clustering in temporal networks through an evolutionary algorithm

Brusa, L;Pennoni, F
2023

Abstract

The dynamic stochastic blockmodel is commonly used to analyze longitudinal network data when multiple snapshots are observed over time. The variational expectation-maximization (VEM) algorithm is typically employed for maximum likelihood inference to allocate nodes to groups dynamically. To address the problem of multiple local maxima, which may arise in this context, we propose modifying the VEM according to an evolutionary algorithm to explore the whole parameter space. A simulation study on dynamic networks and an application illustrate the proposal comparing the performance with that of the VEM algorithm.
Capitolo o saggio
local maxima, longitudinal networks, node classification, stochastic blockmodel, variational expectation-maximization algorithm
English
Book of Abstracts and Short Papers, 14th Scientic Meeting of the Classication and Data Analysis Group, Salerno, September 11-13, 2023
Coretto, P; Giordano, G; La Rocca, M; Parrella, ML; Rampichini, C
2023
9788891935632
Pearson
370
373
Brusa, L., Pennoni, F. (2023). Improving clustering in temporal networks through an evolutionary algorithm. In P. Coretto, G. Giordano, M. La Rocca, M.L. Parrella, C. Rampichini (a cura di), Book of Abstracts and Short Papers, 14th Scientic Meeting of the Classication and Data Analysis Group, Salerno, September 11-13, 2023 (pp. 370-373). Pearson.
reserved
File in questo prodotto:
File Dimensione Formato  
Brusa-2023-procCLADAG-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 624.01 kB
Formato Adobe PDF
624.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/474679
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact