A reliable spatial assessment of the POPs contamination in soils is essential for burden studies and flux evaluations. Soil characteristics and properties vary enormously even within small spatial scale and over time; therefore soil capacity of accumulating POPs varies greatly. In order to include this very high spatial and temporal variability, models can be used for assessing soil accumulation capacity in a specific time and space and, from it, the spatial distribution and temporal trends of POPs concentrations. In this work, predictive contamination maps of the accumulation capacity of soils were developed at a space resolution of 1×1m with a time frame of one day, in a study area located in the central Alps. Physical algorithms for temperature and organic carbon estimation along the soil profile and across the year were fitted to estimate the horizontal, vertical and seasonal distribution of the contamination potential for PCBs in soil (Ksa maps).The resulting maps were cross-validated with an independent set of PCB contamination data, showing very good agreement (e.g. for CB-153, R2=0.80, p-value≤2.2·10-06). Slopes of the regression between predicted Ksa and experimental concentrations were used to map the soil contamination for the whole area, taking into account soil characteristics and temperature conditions. These maps offer the opportunity to evaluate burden (concentration maps) and fluxes (emission maps) with highly resolved temporal and spatial detail.In addition, in order to explain the observed low autumn PCB concentrations in soil related to the high Ksa values of this period, a dynamic model of seasonal variation of soil concentrations was developed basing on rate parameters fitted on measured concentrations. The model was able to describe, at least partially, the observed different behavior between the quite rapid discharge phase in summer and the slow recharge phase in autumn. © 2013 Elsevier B.V.

Ballabio, C., Guazzoni, N., Comolli, R., Tremolada, P. (2013). Highly spatially- and seasonally-resolved predictive contamination maps for persistent organic pollutants: Development and validation. SCIENCE OF THE TOTAL ENVIRONMENT, 458-460, 546-554 [10.1016/j.scitotenv.2013.04.071].

Highly spatially- and seasonally-resolved predictive contamination maps for persistent organic pollutants: Development and validation

BALLABIO, CRISTIANO;COMOLLI, ROBERTO;
2013

Abstract

A reliable spatial assessment of the POPs contamination in soils is essential for burden studies and flux evaluations. Soil characteristics and properties vary enormously even within small spatial scale and over time; therefore soil capacity of accumulating POPs varies greatly. In order to include this very high spatial and temporal variability, models can be used for assessing soil accumulation capacity in a specific time and space and, from it, the spatial distribution and temporal trends of POPs concentrations. In this work, predictive contamination maps of the accumulation capacity of soils were developed at a space resolution of 1×1m with a time frame of one day, in a study area located in the central Alps. Physical algorithms for temperature and organic carbon estimation along the soil profile and across the year were fitted to estimate the horizontal, vertical and seasonal distribution of the contamination potential for PCBs in soil (Ksa maps).The resulting maps were cross-validated with an independent set of PCB contamination data, showing very good agreement (e.g. for CB-153, R2=0.80, p-value≤2.2·10-06). Slopes of the regression between predicted Ksa and experimental concentrations were used to map the soil contamination for the whole area, taking into account soil characteristics and temperature conditions. These maps offer the opportunity to evaluate burden (concentration maps) and fluxes (emission maps) with highly resolved temporal and spatial detail.In addition, in order to explain the observed low autumn PCB concentrations in soil related to the high Ksa values of this period, a dynamic model of seasonal variation of soil concentrations was developed basing on rate parameters fitted on measured concentrations. The model was able to describe, at least partially, the observed different behavior between the quite rapid discharge phase in summer and the slow recharge phase in autumn. © 2013 Elsevier B.V.
Articolo in rivista - Articolo scientifico
Mountain soils; POPs; Maps
English
2013
458-460
546
554
none
Ballabio, C., Guazzoni, N., Comolli, R., Tremolada, P. (2013). Highly spatially- and seasonally-resolved predictive contamination maps for persistent organic pollutants: Development and validation. SCIENCE OF THE TOTAL ENVIRONMENT, 458-460, 546-554 [10.1016/j.scitotenv.2013.04.071].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/47452
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
Social impact