In contact lens (CL) wear, dehydration needs to be tailored to avoid dryness and related symptoms. In this view, this work aims to assess and compare the in-vitro dehydration kinetics of five CL materials, including the newly developed Kalifilcon A CL. At 36 °C and 60% relative humidity, the in-vitro dehydration kinetics of the different CLs were compared using a gravimetric method. CLs were analyzed either after a rinse of a few seconds in preservative-free saline solution or after a 24-h incubation in the same solution. A model based on the Fick diffusion equation was employed to deduce a water kinetics coefficient, providing insights into water diffusion within the polymeric matrix. The study reveals that all materials exhibit a non-Fickian dehydration behavior, with significant differences in dehydration kinetics coefficients and dehydration rate slopes. Etafilcon A and Omafilcon A, both hydrogel CLs, exhibit a similar behavior, different compared to the pattern shown by Senofilcon A and Delefilcon A, silicone-hydrogel CLs. Notably, Kalifilcon A, despite being a silicone-hydrogel, displays a hydration behavior reminiscent of hydrogel CLs.
Ponzini, E., Maspero, F., Galli, A., Tavazzi, S. (2024). In-vitro dehydration kinetics coefficient of Kalifilcon A and other contact lens materials. SCIENTIFIC REPORTS, 14(1) [10.1038/s41598-024-55937-2].
In-vitro dehydration kinetics coefficient of Kalifilcon A and other contact lens materials
Ponzini, E
Primo
;Maspero, FSecondo
;Galli, APenultimo
;Tavazzi, SUltimo
2024
Abstract
In contact lens (CL) wear, dehydration needs to be tailored to avoid dryness and related symptoms. In this view, this work aims to assess and compare the in-vitro dehydration kinetics of five CL materials, including the newly developed Kalifilcon A CL. At 36 °C and 60% relative humidity, the in-vitro dehydration kinetics of the different CLs were compared using a gravimetric method. CLs were analyzed either after a rinse of a few seconds in preservative-free saline solution or after a 24-h incubation in the same solution. A model based on the Fick diffusion equation was employed to deduce a water kinetics coefficient, providing insights into water diffusion within the polymeric matrix. The study reveals that all materials exhibit a non-Fickian dehydration behavior, with significant differences in dehydration kinetics coefficients and dehydration rate slopes. Etafilcon A and Omafilcon A, both hydrogel CLs, exhibit a similar behavior, different compared to the pattern shown by Senofilcon A and Delefilcon A, silicone-hydrogel CLs. Notably, Kalifilcon A, despite being a silicone-hydrogel, displays a hydration behavior reminiscent of hydrogel CLs.File | Dimensione | Formato | |
---|---|---|---|
Ponzini-2024-Sci Rep-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.