Given a finite group R, we let Sub(R) denote the collection of all subgroups of R. We show that [Formula presented], where c<7.372 is an explicit absolute constant. This result is asymptotically best possible. Indeed, as |R| tends to infinity and R is an elementary abelian 2-group, the ratio [Formula presented] tends to c.
Fusari, M., Spiga, P. (2023). On the maximum number of subgroups of a finite group. JOURNAL OF ALGEBRA, 635(1 December 2023), 486-526 [10.1016/j.jalgebra.2023.07.047].
On the maximum number of subgroups of a finite group
Spiga P.
2023
Abstract
Given a finite group R, we let Sub(R) denote the collection of all subgroups of R. We show that [Formula presented], where c<7.372 is an explicit absolute constant. This result is asymptotically best possible. Indeed, as |R| tends to infinity and R is an elementary abelian 2-group, the ratio [Formula presented] tends to c.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Fusari-2023-Journal of Algebra-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
559.66 kB
Formato
Adobe PDF
|
559.66 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.