A generating pair x, y for a group G is said to be symmetric if there exists an automorphism ϕx,y of G inverting both x and y, that is, xϕx,y = x−1 and yϕx,y = y−1. Similarly, a group G is said to be strongly symmetric if G can be generated with two elements and if all generating pairs of G are symmetric. In this paper we classify the finite strongly symmetric non-abelian simple groups. Combinatorially, these are the finite non-abelian simple groups G such that every orientably regular hypermap with monodromy group G is reflexible. Mathematics Subject Classifications: 05C10, 05C25, 20B25.

Lucchini, A., Spiga, P. (2023). Hypermaps Over Non-Abelian Simple Groups and Strongly Symmetric Generating Sets. ELECTRONIC JOURNAL OF COMBINATORICS, 30(3) [10.37236/10286].

Hypermaps Over Non-Abelian Simple Groups and Strongly Symmetric Generating Sets

Spiga P.
2023

Abstract

A generating pair x, y for a group G is said to be symmetric if there exists an automorphism ϕx,y of G inverting both x and y, that is, xϕx,y = x−1 and yϕx,y = y−1. Similarly, a group G is said to be strongly symmetric if G can be generated with two elements and if all generating pairs of G are symmetric. In this paper we classify the finite strongly symmetric non-abelian simple groups. Combinatorially, these are the finite non-abelian simple groups G such that every orientably regular hypermap with monodromy group G is reflexible. Mathematics Subject Classifications: 05C10, 05C25, 20B25.
Articolo in rivista - Articolo scientifico
inglese
English
28-lug-2023
2023
30
3
P3.13
open
Lucchini, A., Spiga, P. (2023). Hypermaps Over Non-Abelian Simple Groups and Strongly Symmetric Generating Sets. ELECTRONIC JOURNAL OF COMBINATORICS, 30(3) [10.37236/10286].
File in questo prodotto:
File Dimensione Formato  
Lucchini-2023-TheElJourCom-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 272.98 kB
Formato Adobe PDF
272.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/470950
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact