This work surveys the research contributions of the last decade to the prediction of customer churn and adds a perspective toward what is yet to be reached. The main objective of this article is to report on (1) the methods and algorithms studied, the evaluation metrics adopted, and the results achieved, (2) the data used, and (3) the issues and limitations identified. Furthermore, the work highlights the gaps in the current literature and suggests a direction for future research.

Barsotti, A., Gianini, G., Mio, C., Lin, J., Babbar, H., Singh, A., et al. (2024). A Decade of Churn Prediction Techniques in the TelCo Domain: A Survey. SN COMPUTER SCIENCE, 5(4), 1-15 [10.1007/s42979-024-02722-7].

A Decade of Churn Prediction Techniques in the TelCo Domain: A Survey

Gianini, G
Co-primo
;
2024

Abstract

This work surveys the research contributions of the last decade to the prediction of customer churn and adds a perspective toward what is yet to be reached. The main objective of this article is to report on (1) the methods and algorithms studied, the evaluation metrics adopted, and the results achieved, (2) the data used, and (3) the issues and limitations identified. Furthermore, the work highlights the gaps in the current literature and suggests a direction for future research.
Articolo in rivista - Articolo scientifico
Causal inference; Churn prediction; Machine learning techniques; Telecom customer churn;
English
6-apr-2024
2024
5
4
1
15
404
open
Barsotti, A., Gianini, G., Mio, C., Lin, J., Babbar, H., Singh, A., et al. (2024). A Decade of Churn Prediction Techniques in the TelCo Domain: A Survey. SN COMPUTER SCIENCE, 5(4), 1-15 [10.1007/s42979-024-02722-7].
File in questo prodotto:
File Dimensione Formato  
Barsotti-2024-SN Computer Science-VoR.pdf

accesso aperto

Descrizione: versione pubblicata in OA
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 886.91 kB
Formato Adobe PDF
886.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/470779
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact