The Timed Up and Go (TUG) test is a common mobility measure in rehabilitation. With the instrumental TUG test (ITUG; i.e. the TUG measured by inertial measurement units, IMUs), several movement measures are newly available. However, the clinical meaning of these new measures is not totally clear. Aim of the current work is to evaluate the validity of different ITUG parameters as a measure of balance. Neurological patients (n = 122; 52 females; 89 older than 65 years) completed the TUG test with IMUs secured to their back. IMUs signals were used to split the TUG test in five phases (sit-to-stand, walk1, turn1, walk2 and turn-and-sit) and twelve movement parameters were obtained. Experienced clinicians administered the Mini-BESTest (MB) scale, a sound balance measure. The partial least square regression (PLSR) was used to explore the association between the ITUG variables and the MB measure. A PLSR model with twelve ITUG variables had satisfactory fit parameters (RMSEP: 11%; R2: 0.41, 95% CI: 0.28–0.54; regression line: 1, 95% CI: 0.78–1.22). Three ITUG variables (i.e. turn1 vertical angular velocity, turn1 duration and turn2 vertical angular velocity) were found to be the most important predictors of the MB measure. A PLSR model with the turning variables only had fit parameters comparable to that of the twelve variables model. Turning parameters from the TUG test are good predictors of the MB scale. The mean angular velocity during turning and the duration of the turning phase are thus proposed as a valid, ratio-level measures of balance in neurological patients.
Caronni, A., Sterpi, I., Antoniotti, P., Aristidou, E., Nicolaci, F., Picardi, M., et al. (2018). Criterion validity of the instrumented Timed Up and Go test: A partial least square regression study. GAIT & POSTURE, 61, 287-293 [10.1016/j.gaitpost.2018.01.015].
Criterion validity of the instrumented Timed Up and Go test: A partial least square regression study
Antoniotti P.;Picardi M.;
2018
Abstract
The Timed Up and Go (TUG) test is a common mobility measure in rehabilitation. With the instrumental TUG test (ITUG; i.e. the TUG measured by inertial measurement units, IMUs), several movement measures are newly available. However, the clinical meaning of these new measures is not totally clear. Aim of the current work is to evaluate the validity of different ITUG parameters as a measure of balance. Neurological patients (n = 122; 52 females; 89 older than 65 years) completed the TUG test with IMUs secured to their back. IMUs signals were used to split the TUG test in five phases (sit-to-stand, walk1, turn1, walk2 and turn-and-sit) and twelve movement parameters were obtained. Experienced clinicians administered the Mini-BESTest (MB) scale, a sound balance measure. The partial least square regression (PLSR) was used to explore the association between the ITUG variables and the MB measure. A PLSR model with twelve ITUG variables had satisfactory fit parameters (RMSEP: 11%; R2: 0.41, 95% CI: 0.28–0.54; regression line: 1, 95% CI: 0.78–1.22). Three ITUG variables (i.e. turn1 vertical angular velocity, turn1 duration and turn2 vertical angular velocity) were found to be the most important predictors of the MB measure. A PLSR model with the turning variables only had fit parameters comparable to that of the twelve variables model. Turning parameters from the TUG test are good predictors of the MB scale. The mean angular velocity during turning and the duration of the turning phase are thus proposed as a valid, ratio-level measures of balance in neurological patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.