The Deep Underground Neutrino Experiment (DUNE) is a next generation experiment aimed to study neutrino oscillation. Its long-baseline configuration will exploit a Near Detector (ND) and a Far Detector (FD) located at a distance of ∼1300 km. The FD will consist of four Liquid Argon Time Projection Chamber (LAr TPC) modules. A Photon Detection System (PDS) will be used to detect the scintillation light produced inside the detector after neutrino interactions. The PDS will be based on light collectors coupled to Silicon Photomultipliers (SiPMs). Different photosensor technologies have been proposed and produced in order to identify the best samples to fullfill the experiment requirements. In this paper, we present the procedure and results of a validation campaign for the Hole Wire Bonding (HWB) MPPCs samples produced by Hamamatsu Photonics K.K. (HPK) for the DUNE experiment, referring to them as `SiPMs'. The protocol for a characterization at cryogenic temperature (77 K) is reported. We present the down-selection criteria and the results obtained during the selection campaign undertaken, along with a study of the main sources of noise of the SiPMs including the investigation of a newly observed phenomenon in this field.

Andreotti, M., Bertolucci, S., Branca, A., Brizzolari, C., Brunetti, G., Calabrese, R., et al. (2024). Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system. JOURNAL OF INSTRUMENTATION, 19(1) [10.1088/1748-0221/19/01/t01007].

Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system

Branca, A.;Brizzolari, C.;Brunetti, G.;Carniti, P.;Cristaldo Morales, E.;Delgado Gonzalez, M.;Falcone, A.;Galizzi, F.;Gotti, C.;Guffanti, D.;Meazza, L.;Minotti, A.;Pessina, G.;Spanu, M.;Terranova, F.;Tenti, M.;Torti, M.;
2024

Abstract

The Deep Underground Neutrino Experiment (DUNE) is a next generation experiment aimed to study neutrino oscillation. Its long-baseline configuration will exploit a Near Detector (ND) and a Far Detector (FD) located at a distance of ∼1300 km. The FD will consist of four Liquid Argon Time Projection Chamber (LAr TPC) modules. A Photon Detection System (PDS) will be used to detect the scintillation light produced inside the detector after neutrino interactions. The PDS will be based on light collectors coupled to Silicon Photomultipliers (SiPMs). Different photosensor technologies have been proposed and produced in order to identify the best samples to fullfill the experiment requirements. In this paper, we present the procedure and results of a validation campaign for the Hole Wire Bonding (HWB) MPPCs samples produced by Hamamatsu Photonics K.K. (HPK) for the DUNE experiment, referring to them as `SiPMs'. The protocol for a characterization at cryogenic temperature (77 K) is reported. We present the down-selection criteria and the results obtained during the selection campaign undertaken, along with a study of the main sources of noise of the SiPMs including the investigation of a newly observed phenomenon in this field.
Articolo in rivista - Articolo scientifico
Cryogenic detectors; Photon detectors for UV, visible and IR photons (solid-state); Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc)
English
2024
19
1
T01007
open
Andreotti, M., Bertolucci, S., Branca, A., Brizzolari, C., Brunetti, G., Calabrese, R., et al. (2024). Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system. JOURNAL OF INSTRUMENTATION, 19(1) [10.1088/1748-0221/19/01/t01007].
File in questo prodotto:
File Dimensione Formato  
10281-468199_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/468199
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
Social impact