We show that ground state solutions to the nonlinear, fractional problem { (−∆)su + V (x)u = f(x, u) in Ω, u = 0 in RN \ Ω, on a bounded domain Ω ⊂ RN, converge (along a subsequence) in L2(Ω), under suitable conditions on f and V, to a solution of the local problem as s → 1−.
Bieganowski, B., Secchi, S. (2021). Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 57(2), 413-425 [10.12775/TMNA.2020.038].
Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains
Secchi S.
2021
Abstract
We show that ground state solutions to the nonlinear, fractional problem { (−∆)su + V (x)u = f(x, u) in Ω, u = 0 in RN \ Ω, on a bounded domain Ω ⊂ RN, converge (along a subsequence) in L2(Ω), under suitable conditions on f and V, to a solution of the local problem as s → 1−.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bieganowski-2021-TMNLA-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
350.05 kB
Formato
Adobe PDF
|
350.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Bieganowski-2021-TMNLA-preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
362.57 kB
Formato
Adobe PDF
|
362.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.