Introduction:PIK3CA gene mutations occur in approximately 40% of hormone receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancers (MBCs), electing them to targeted therapy. Testing PIK3CA status is complex due to selection of biological specimen and testing method. Materials & methods: This work investigates real-life experience on PIK3CA testing in HR+/HER2- MBC. Clinical, technical and molecular data on PIK3CA testing were collected from two referral laboratories. Additionally, the results of a nationwide PIK3CA survey involving 116 institutions were assessed. Results: Overall, n = 35 MBCs were PIK3CA-mutated, with mutations mostly occurring in exons 9 (n = 19; 51.4%) and 20 (n = 15; 40.5%). The nationwide survey revealed significant variability across laboratories in terms of sampling methodology, technical assessment and clinical report signing healthcare figures for PIK3CA molecular testing in diagnostic routine practice. Conclusion: This study provides insights into the real-world routine of PIK3CA testing in HR+/HER2- MBC and highlights the need for standardization and networking in predictive pathology.
Pepe, F., Venetis, K., Cursano, G., Frascarelli, C., Pisapia, P., Vacirca, D., et al. (2024). PIK3CA testing in hormone receptor-positive/HER2-negative metastatic breast cancer: real-world data from Italian molecular pathology laboratories. PHARMACOGENOMICS, 25(3), 161-169 [10.2217/pgs-2023-0238].
PIK3CA testing in hormone receptor-positive/HER2-negative metastatic breast cancer: real-world data from Italian molecular pathology laboratories
Mane, E;Pagni, F;
2024
Abstract
Introduction:PIK3CA gene mutations occur in approximately 40% of hormone receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancers (MBCs), electing them to targeted therapy. Testing PIK3CA status is complex due to selection of biological specimen and testing method. Materials & methods: This work investigates real-life experience on PIK3CA testing in HR+/HER2- MBC. Clinical, technical and molecular data on PIK3CA testing were collected from two referral laboratories. Additionally, the results of a nationwide PIK3CA survey involving 116 institutions were assessed. Results: Overall, n = 35 MBCs were PIK3CA-mutated, with mutations mostly occurring in exons 9 (n = 19; 51.4%) and 20 (n = 15; 40.5%). The nationwide survey revealed significant variability across laboratories in terms of sampling methodology, technical assessment and clinical report signing healthcare figures for PIK3CA molecular testing in diagnostic routine practice. Conclusion: This study provides insights into the real-world routine of PIK3CA testing in HR+/HER2- MBC and highlights the need for standardization and networking in predictive pathology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.