In the present study, we investigated the effect of apigenin, a flavonoid widely present in fruits and vegetables, on a tongue oral cancer-derived cell line (SCC-25) and on a keratinocyte cell line (HaCaT), with the aim of unveiling its antiproliferative mechanisms. The effect of apigenin on cell growth was evaluated by MTT assay, while apoptosis was investigated by phosphatidyl serine membrane translocation and cell cycle distribution by propidium iodide DNA staining through flow cytometry. In addition the expression of cyclins and cyclin-dependent kinases was evaluated by western blotting. A reduction of apigenin-induced cell growth was found in both cell lines, although SCC-25 cells were significantly more sensitive than the immortalized keratinocytes, HaCaT. Moreover, apigenin induced apoptosis and modulated the cell cycle in SCC-25 cells. Apigenin treatment resulted in cell cycle arrest at both G0/G1 and G2/M checkpoints, while western blot analysis revealed the decreased expression of cyclin D1 and E, and inactivation of CDK1 upon apigenin treatment. These results demonstrate the anticancer potential of apigenin in an oral squamous cell carcinoma cell line, suggesting that it may be a very promising chemopreventive agent due to its cancer cell cytotoxic activity and its ability to act as a cell cycle modulating agent at multiple levels.
Maggioni, D., Garavello, W., Rigolio, R., Pignataro, L., Gaini, R., Nicolini, G. (2013). Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. INTERNATIONAL JOURNAL OF ONCOLOGY, 43(5), 1675-1682 [10.3892/ijo.2013.2072].
Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis
MAGGIONI, DANIELEPrimo
;GARAVELLO, WERNERSecondo
;RIGOLIO, ROBERTA;GAINI, RENATO MARIAPenultimo
;NICOLINI, GABRIELLAUltimo
2013
Abstract
In the present study, we investigated the effect of apigenin, a flavonoid widely present in fruits and vegetables, on a tongue oral cancer-derived cell line (SCC-25) and on a keratinocyte cell line (HaCaT), with the aim of unveiling its antiproliferative mechanisms. The effect of apigenin on cell growth was evaluated by MTT assay, while apoptosis was investigated by phosphatidyl serine membrane translocation and cell cycle distribution by propidium iodide DNA staining through flow cytometry. In addition the expression of cyclins and cyclin-dependent kinases was evaluated by western blotting. A reduction of apigenin-induced cell growth was found in both cell lines, although SCC-25 cells were significantly more sensitive than the immortalized keratinocytes, HaCaT. Moreover, apigenin induced apoptosis and modulated the cell cycle in SCC-25 cells. Apigenin treatment resulted in cell cycle arrest at both G0/G1 and G2/M checkpoints, while western blot analysis revealed the decreased expression of cyclin D1 and E, and inactivation of CDK1 upon apigenin treatment. These results demonstrate the anticancer potential of apigenin in an oral squamous cell carcinoma cell line, suggesting that it may be a very promising chemopreventive agent due to its cancer cell cytotoxic activity and its ability to act as a cell cycle modulating agent at multiple levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.